P041 Tandem mass tag-based quantitative proteomic profiling identifies novel putative serum biomarkers for the diagnosis of drug-induced liver injury in patients (original) (raw)

Tandem mass tag-based quantitative proteomic profiling identifies candidate serum biomarkers of drug-induced liver injury in humans

Nature Communications

Diagnosis of drug-induced liver injury (DILI) and its distinction from other liver diseases are significant challenges in drug development and clinical practice. Here, we identify, confirm, and replicate the biomarker performance characteristics of candidate proteins in patients with DILI at onset (DO; n = 133) and follow-up (n = 120), acute non-DILI at onset (NDO; n = 63) and follow-up (n = 42), and healthy volunteers (HV; n = 104). Area under the receiver operating characteristic curve (AUC) for cytoplasmic aconitate hydratase, argininosuccinate synthase, carbamoylphosphate synthase, fumarylacetoacetase, fructose-1,6-bisphosphatase 1 (FBP1) across cohorts achieved near complete separation (range: 0.94–0.99) of DO and HV. In addition, we show that FBP1, alone or in combination with glutathione S-transferase A1 and leukocyte cell-derived chemotaxin 2, could potentially assist in clinical diagnosis by distinguishing NDO from DO (AUC range: 0.65–0.78), but further technical and clinic...

Serum proteomic profiling in patients with drug-induced liver injury

Alimentary Pharmacology & Therapeutics, 2012

Idiosyncratic drug-induced liver injury (DILI) is a complex disorder that is difficult to predict, diagnose and treat. To describe the global serum proteome of patients with DILI and controls. A label-free, mass spectrometry-based quantitative proteomic approach was used to explore protein expression in serum samples from 74 DILI patients (collected within 14 days of DILI onset) and 40 controls. A longitudinal analysis was conducted in a subset of 21 DILI patients with available 6-month follow-up serum samples. Comparison of DILI patients based on pattern, severity and causality assessment of liver injury revealed many differentially expressed priority 1 proteins among groups. Expression of fumarylacetoacetase was correlated with alanine aminotransferase (ALT; r = 0.237; P = 0.047), aspartate aminotransferase (AST; r = 0.389; P = 0.001) and alkaline phosphatase (r = À0.240; P = 0.043), and this was the only protein with significant differential expression when comparing patients with hepatocellular vs. cholestatic or mixed injury. In the longitudinal analysis, expression of 53 priority 1 proteins changed significantly from onset of DILI to 6-month follow-up, and nearly all proteins returned to expression levels comparable to control subjects. Ninety-two serum priority 1 proteins with significant differential expression were identified when comparing the DILI and control groups. Pattern analysis revealed proteins that are components of inflammation, immune system activation and several hepatotoxicity-specific pathways. Apolipoprotein E expression had the greatest power to differentiate DILI patients from controls (89% correct classification; AUROC = 0.97). This proteomic analysis identified differentially expressed proteins that are components of pathways previously implicated in the pathogenesis of idiosyncratic drug-induced liver injury.

Pharmacogenomics of drug-induced liver injury (DILI): Molecular biology to clinical applications

Journal of Hepatology, 2018

A 21-year old woman was admitted to hospital with a two-week history of painless jaundice, fatigue and anorexia having previously been fit and well. One month prior to presentation, the patient had taken a five-day course of amoxicillin-clavulanic acid for an infected skin cyst. Otherwise, she was only on the oral contraceptive pill and reported minimal alcohol intake. On examination, she was deeply jaundiced, but alert and oriented with no asterixis. She had no stigmata of chronic liver disease, but hepatomegaly extending 3 cm from below the right subcostal margin was evident. Investigations showed: white cell count 13.4 Â 10 9 /L (normal 3.6-9.3), haemoglobin 11.8 g/dl (normal 11-15), platelet count 356 Â 10 9 /L (normal 170-420), sodium 138 mmol/L (normal 134-144), potassium 3.5 mmol/L (normal 3.5-5.0), creatinine 32 lmol/L (normal 40-75), albumin 30 g/L (normal 35-48), alanine aminotransferase 707 IU/L (normal 15-54), alkaline phosphatase 151 IU/L (normal 30-130), bilirubin 384 lmol/L (normal 7-31) and prothrombin time 27.2 s (normal 11.7-14). Screening for hepatitis A, B, C, E, Epstein-Barr virus, cytomegalovirus and autoimmune hepatitis was negative. Tests for anti-smooth muscle, antinuclear, and anti-liver-kidney microsomal-1 antibodies were negative; immunoglobulin levels and ceruloplasmin levels were normal. Liver ultrasonography demonstrated a liver of normal contour with no biliary dilatation, a normal spleen size and patent vessels. Liver biopsy revealed severe portal interface hepatitis with lobular inflammation and scant plasma cells. Her clinical condition deteriorated in the following days with prothrombin time and bilirubin rising to 56.6 s and 470 lmol/L, respectively. At follow-up after 11 days, her alanine aminotransferase level was 1,931 IU/L. She developed grade 2 hepatic encephalopathy 14 days after presentation, and was listed for a super-urgent liver transplant. Human leucocyte antigen (HLA) typing was performed as a part of preparatory investigations and showed the patient carried the HLA haplotype HLA-DRB1 ⁄ 15:0 2-DQB1 ⁄ 06:01. Following orthotopic transplantation of a deceased donor graft her explant histology revealed severe ongoing hepatitis with multi-acinar necrosis (Fig. 1A and B). This case raised a number of important questions about the diagnosis of drug-induced liver injury and tools available for clinicians to make the best decisions for patient care: I. How is the diagnosis of drug-induced liver injury made? II. What are the risk factors, including genetic risk factors? III. What are the mechanisms of liver injury? IV. What prognostic factors can be considered? V. What are the potential therapeutic options? In this Grand Rounds article, we will explore these questions, describing the pathophysiology, diagnostic and prognostic biomarkers, and clinical management of drug-induced liver injury. We will also discuss ongoing areas of uncertainty.

Metabolomic analysis to discriminate drug-induced liver injury (DILI) phenotypes

Archives of Toxicology

Drug-induced liver injury (DILI) is an adverse toxic hepatic clinical reaction associated to the administration of a drug that can occur both at early clinical stages of drug development, as well after normal clinical usage of approved drugs. Because of its unpredictability and clinical relevance, it is of medical concern. Three DILI phenotypes (hepatocellular, cholestatic, and mixed) are currently recognized, based on serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) values. However, this classification lacks accuracy to distinguish among the many intermediate mixed types, or even to estimate the magnitude and progression of the injury. It was found desirable to have additional elements for better evaluation criteria of DILI. With this aim, we have examined the serum metabolomic changes occurring in 79 DILI patients recruited and monitored using established clinical criteria, along the course of the disease and until recovery. Results revealed that free and conjug...

Genomic indicators in the blood predict drug-induced liver injury

The Pharmacogenomics Journal, 2010

Genomic biomarkers for the detection of drug-induced liver injury (DILI) from blood are urgently needed for monitoring drug safety. We used a unique data set as part of the Food and Drug Administration led MicroArray Quality Control Phase-II (MAQC-II) project consisting of gene expression data from the two tissues (blood and liver) to test cross-tissue predictability of genomic indicators to a form of chemically induced liver injury. We then use the genomic indicators from the blood as biomarkers for prediction of acetaminophen-induced liver injury and show that the cross-tissue predictability of a response to the pharmaceutical agent (accuracy as high as 92.1%) is better than, or at least comparable to, that of non-therapeutic compounds. We provide a database of gene expression for the highly informative predictors, which brings biological context to the possible mechanisms involved in DILI. Pathway-based predictors were associated with inflammation, angiogenesis, Toll-like receptor signaling, apoptosis, and mitochondrial damage. The results show for the first time and support the hypothesis that genomic indicators in the blood can serve as potential diagnostic biomarkers predictive of DILI.

Genetic and Molecular Factors in Drug-Induced Liver Injury: A Review

Current Drug Safety, 2007

The diagnosis of drug-induced liver injury (DILI) is challenging and based on complex diagnostic criteria. DILI falls into two main categories i) intrinsic "dose-dependent" Type A reactions ii) "idiosyncratic" or Type B reactions (which are usually not predictable). Idiosyncratic reactions can be immunoallergic (hypersensitivity), or metabolic, although overlap between categories can occur. The aim of this review is to summarise the general view of underlying mechanisms in DILI and to highlight individual risk factors for developing hepatotoxicity. Polymorphisms of bioactivation/toxification pathways through CYP450 enzymes (Phase I), detoxification reactions (Phase II) and excretion/transport (Phase III) are explored together with immunological factors in hepatotoxicity. The importance of establishing a multidisciplinary and multicentric network to promote the understanding and research in hepatotoxicity is underlined. Challenges such as genetic analyses for association studies and whole genome studies, pharmacogenetic testing and future approaches to study DILI are considered. Knowledge regarding these operational mechanisms could provide further insight for the prospective identification of susceptible patients at risk of developing drug-induced hepatotoxicity.

The Need for Biomarkers in Diagnosis and Prognosis of Drug-Induced Liver Disease: Does Metabolomics Have Any Role?

BioMed Research International, 2015

Drug-induced liver injury (DILI) is a potentially fatal adverse event and the leading cause of acute liver failure in the US and in the majority of Europe. The liver can be affected directly, in a dose-dependent manner, or idiosyncratically, independently of the dose, and therefore unpredictably. Currently, DILI is a diagnosis of exclusion that physicians should suspect in patients with unexplained elevated liver enzymes. Therefore, new diagnostic and prognostic biomarkers are necessary to achieve an early and reliable diagnosis of DILI and thus improve the prognosis. Although several DILI biomarkers have been found through analytical and genetic tests and pharmacokinetic approaches, none of them have been able to display enough specificity and sensitivity, so new approaches are needed. In this sense, metabolomics is a strongly and promising emerging field that, from biofluids collected through minimally invasive procedures, can obtain early biomarkers of toxicity, which may constit...

Pathogenesis of Idiosyncratic Drug-Induced Liver Injury and Clinical Perspectives

Gastroenterology, 2014

Idiosyncratic drug-induced liver injury (DILI) is a rare disease that develops independently of drug dose, route, or duration of administration. Furthermore, idiosyncratic DILI is not a single disease entity but rather a spectrum of rare diseases with varying clinical, histological, and laboratory features. The pathogenesis of DILI is not fully understood. Standardization of the DILI nomenclature and methods to assess causality, along with the information provided by the LiverTox Web site, will harmonize and accelerate research on DILI. Studies of new serum biomarkers such as glutamate dehydrogenase, high mobility group box protein 1, and microRNA-122 could provide information for use in diagnosis and prognosis and provide important insights into the mechanisms of the pathogenesis of DILI. Single nucleotide polymorphisms in the HLA region have been associated with idiosyncratic hepatotoxicity attributed to flucloxacillin, ximelagatran, lapatinib, and amoxicillin-clavulanate. However, genome-wide association studies of pooled cases have not associated any genetic factors with idiosyncratic DILI. Whole genome and whole exome sequencing analyses are under way to study cases of DILI attributed to a single medication. Serum proteomic, transcriptome, and metabolome as well as intestinal microbiome analyses will increase our understanding of the mechanisms of this disorder. Further improvements to in vitro and in vivo test systems should advance our understanding of the causes, risk factors, and mechanisms of idiosyncratic DILI.

The Potential Role of Metabolomics in Drug-Induced Liver Injury (DILI) Assessment

Metabolites

Drug-induced liver injury (DILI) is one of the most frequent adverse clinical reactions and a relevant cause of morbidity and mortality. Hepatotoxicity is among the major reasons for drug withdrawal during post-market and late development stages, representing a major concern to the pharmaceutical industry. The current biochemical parameters for the detection of DILI are based on enzymes (alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), alkaline phosphatase (ALP)) and bilirubin serum levels that are not specific of DILI and therefore there is an increasing interest on novel, specific, DILI biomarkers discovery. Metabolomics has emerged as a tool with a great potential for biomarker discovery, especially in disease diagnosis, and assessment of drug toxicity or efficacy. This review summarizes the multistep approaches in DILI biomarker research and discovery based on metabolomics and the principal outcomes from the research performe...

Translating new knowledge on drug-induced liver injury into clinical practice

Frontline Gastroenterology, 2019

Drug-induced liver injury (DILI) is one of the main reasons for drug withdrawal from the market, and a cause of worldwide morbidity. Although several issues on DILI are still unsolved, there have been significant advances in new definitions and diagnosis tools. DILI is the result of a complex interaction between genetic and environmental factors, and constitutes an expanding area of investigation. DILI can mimic virtually all known hepatopathies, including vascular disorders and liver tumours. As part of this broad spectrum of clinical presentations, DILI severity ranges from asymptomatic elevations of aminotransferases to acute liver failure. Although biomarkers are emerging as valuable diagnostic tools, they are not available in clinical practice. Accurate DILI diagnosis is a challenging issue, particularly the establishing of causal relationships with the culprit agent and the exclusion of competing causes of liver injury. Given that the understanding of the mechanisms inducing D...

Genetic Polymorphisms Implicated in Nonalcoholic Liver Disease or Selected Other Disorders Have No Influence on Drug‐Induced Liver Injury

Hepatology Communications, 2019

for the US DILIN Investigators With the application of genetic testing to contemporary medical diagnostics and practice, it has become apparent that the phenotypes of many disorders are modulated by host genetic factors. The aim of the current study was to determine whether selected single nucleotide polymorphisms (SNPs) unrelated to the human leukocyte antigen region or other immune pathways, including those associated with nonalcoholic fatty liver disease (NAFLD), may influence development, severity, or outcomes of drug-induced liver injury (DILI). Thirteen variants previously associated with NAFLD and/or selected other liver diseases were tested in 832 Caucasian DILI cases and 10,397 Caucasian population controls. DILI cases were attributed to multiple agents (177 individual drugs), with 56 cases due to herbal/dietary supplement products. Allele frequencies were imputed from recent genome-wide association studies and compared to those for European control samples from the Gnomad database. Significance was tested by linear regression or logistic regression, depending on the nature of the trait. Any variant that passed the Bonferroni threshold of P < 0.0004 (0.05 13) was considered a significant association. None of the variants proved to be significantly associated with DILI as phenotype nor with any of the selected severity traits. Among the variants studied, rs1421085, found in the fat mass and obesity associated (FTO) gene, showed a marginal protective effect (odds ratio, 0.8; 95% confidence interval, 0.77-0.95; P = 0.005). None of the genetic polymorphisms tested were significantly associated with the risk of development, severity, or outcome of DILI. Conclusion: SNPs implicated in common liver diseases, such as NAFLD, do not play a substantial role in DILI pathogenesis across agents. It remains possible that these variants could be involved with DILI due to single agents, but this will require the evaluation of larger numbers of bona fide cases. (Hepatology Communications 2019;0:1-4).

Genetic basis of drug-induced liver injury: present and future

Seminars in liver disease, 2014

There is considerable evidence that susceptibility to idiosyncratic drug-induced liver injury (DILI) is genetically determined. Though genetic associations with DILI have been reported since the 1980s, the development of genome-wide association studies has enabled genetic risk factors for DILI, in common with other diseases, to be detected and confirmed more confidently. Human leukocyte antigen (HLA) genotype has been demonstrated to be a strong risk factor for development of DILI with a range of drugs and the underlying mechanism, probably involving presentation of a drug-peptide complex to T cells is increasingly well understood. However, specific HLA alleles are not associated with all forms of DILI and non-HLA genetic risk factors, especially those relating to drug disposition, also appear to contribute. For some drugs, there is evidence of a dual role for HLA and drug metabolism genes. Though the associations with non-HLA genes have been less well replicated than the HLA associ...

Candidate biomarkers for the diagnosis and prognosis of drug-induced liver injury: An international collaborative effort

Hepatology (Baltimore, Md.), 2018

Current blood biomarkers are suboptimal in detecting drug-induced liver injury (DILI) and predicting its outcome. We sought to characterize the natural variabilty and performance characteristics of 14 promising DILI biomarker candidates. Serum or plasma from multiple cohorts of healthy volunteers (n = 192 and n = 81), subjects who safely took potentially hepatotoxic drugs without adverse effects (n = 55 and n = 92) and DILI patients (n = 98, n = 28, and n = 143) were assayed for microRNA-122 (miR-122), glutamate dehydrogenase (GLDH), total cytokeratin 18 (K18), caspase cleaved K18, glutathione S-transferase α, alpha-fetoprotein, arginase-1, osteopontin (OPN), sorbitol dehydrogenase, fatty acid binding protein, cadherin-5, macrophage colony-stimulating factor receptor (MCSFR), paraoxonase 1 (normalized to prothrombin protein), and leukocyte cell-derived chemotaxin-2. Most candidate biomarkers were significantly altered in DILI cases compared with healthy volunteers. GLDH correlated m...

Biomarkers of idiosyncratic drug-induced liver injury (DILI) - a systematic review

Expert Opinion on Drug Metabolism & Toxicology, 2021

Introduction: Idiosyncratic drug-induced liver injury (DILI) is an unpredictable event, and there are no specific biomarkers that can distinguish DILI from alternative explanations or predict its clinical outcomes. Areas covered: This systematic review summarizes the available evidence for all biomarkers proposed to have a role in the diagnosis or prognosis of DILI. Following a comprehensive search, we included all types of studies in humans. We included DILI cases based on any threshold criteria but excluded intrinsic DILI, commonly caused by paracetamol overdose. We classified studies into diagnostic and prognostic categories and assessed their methodological quality. After reviewing the literature, 14 studies were eligible. Expert Opinion: Diagnostic studies were heterogeneous with regard to the study population and outcomes measured. Prognostic models were developed by integrating novel biomarkers, risk scores, and traditional biomarkers, which increased their prognostic ability to predict death or transplantation by 6 months. This systematic review highlights the case of need for non-genetic biomarkers that distinguish DILI from acute liver injury related to alternative etiology. Biomarkers with the potential to identify serious adverse outcomes from acute DILI should be validated in independent prospective cohorts with a substantial number of cases.

Drug-induced liver injury: recent advances in diagnosis and risk assessment

Gut, 2017

Idiosyncratic drug-induced liver injury (IDILI) is a rare but potentially severe adverse drug reaction that should be considered in patients who develop laboratory criteria for liver injury secondary to the administration of a potentially hepatotoxic drug. Although currently used liver parameters are sensitive in detecting DILI, they are neither specific nor able to predict the patient's subsequent clinical course. Genetic risk assessment is useful mainly due to its high negative predictive value, with several human leucocyte antigen alleles being associated with DILI. New emerging biomarkers which could be useful in assessing DILI include total keratin18 (K18) and caspase-cleaved keratin18 (ccK18), macrophage colony-stimulating factor receptor 1, high mobility group box 1 and microRNA-122. From the numerous in vitro test systems that are available, monocyte-derived hepatocytes generated from patients with DILI show promise in identifying the DILI-causing agent from among a pane...

Elevated levels of circulating CDH5 and FABP1 in association with human drug-induced liver injury

Liver International, 2016

Background & Aims: The occurrence of drug-induced liver injury (DILI) is a major issue in all phases of drug development. To identify novel biomarker candidates associated with DILI, we utilised an affinity proteomics strategy, where antibody suspension bead arrays were applied to profile plasma and serum samples from human DILI cases and controls. Methods: An initial screening was performed using 4594 randomly selected antibodies, representing 3450 human proteins. Resulting candidate proteins together with proposed DILI biomarker candidates generated a DILI array of 251 proteins for subsequent target analysis and verifications. In total, 1196 samples from 241 individuals across four independent cohorts were profiled: healthy volunteers receiving acetaminophen, patients with human immunodeficiency virus and/or tuberculosis receiving treatment, DILI cases originating from a wide spectrum of drugs, and healthy volunteers receiving heparins. Results: We observed elevated levels of cadherin 5, type 2 (CDH5) and fatty acid-binding protein 1 (FABP1) in DILI cases. In the two longitudinal cohorts, CDH5 was elevated already at baseline. FABP1 was elevated after treatment initiation and seemed to respond more rapidly than alanine aminotransferase (ALT). The elevations were verified in the DILI cases treated with various drugs. In the heparin cohort, CDH5 was stable over time whereas FABP1 was elevated. Conclusions: These results suggest that CDH5 may have value as a susceptibility marker for DILI. FABP1 was identified as a biomarker candidate with superior Abbreviations ALP, alkaline phosphatase; ALT, alanine aminotransferase; APAP, acetaminophen; AST, aspartate aminotransferase; AUC, area under the curve; CDH5, cadherin 5, type 2; DILI, drug-induced liver injury; FABP1, fatty acid-binding protein 1; HIV, human immunodeficiency virus; HV, healthy volunteers; MFI, median fluorescence intensity; TB, tuberculosis.

Faculty of 1000 evaluation for Serum proteomics and biomarker discovery across the spectrum of nonalcoholic fatty liver disease

F1000 - Post-publication peer review of the biomedical literature, 2010

Nonalcoholic fatty liver disease (NAFLD), ranging from relatively benign simple steatosis to progressive nonalcoholic steatohepatitis (NASH) and fibrosis, is an increasingly common chronic liver disease. Liver biopsy is currently the only reliable tool for staging the subtypes of NAFLD; therefore, noninvasive serum biomarkers for evaluation of liver disease and fibrosis are urgently needed. We performed this study to describe changes in the serum proteome and identify biomarker candidates in serum samples from 69 patients with varying stages of NAFLD (simple steatosis, NASH, and NASH with advanced bridging [F3/F4] fibrosis) and 16 obese controls. Using a label-free mass spectrometry-based approach we identified over 1,700 serum proteins with a peptide identification (ID) confidence level of >75%, 605 of which changed significantly between any two patient groups (false discovery rate <5%). Importantly, expression levels of 55 and 15 proteins changed significantly between the simple steatosis and NASH F3/F4 group and the NASH and NASH F3/F4 group, respectively. Classification of proteins with significant changes showed involvement in immune system regulation and inflammation, coagulation, cellular and extracellular matrix structure and function, and roles as carrier proteins in the blood. Further, many of these proteins are synthesized exclusively by the liver and could potentially serve as diagnostic biomarkers for identifying and staging NAFLD. Conclusion-This proteomic analysis reveals important information regarding the pathogenesis/ progression of NAFLD and NASH and demonstrates key changes in serum protein expression levels between control subjects and patients with different stages of fatty liver. Future validation of these potential biomarkers is needed such that these proteins may be used in place of liver biopsy to facilitate diagnosis and treatment of patients with NAFLD. The incidence of nonalcoholic fatty liver disease (NAFLD) continues to increase, and prevalence estimates for NAFLD range from 17%-33% in the general population of Western countries. 1 Fatty liver encompasses an entire pathological spectrum of disease, from relatively benign accumulation of lipid (simple steatosis) to progressive nonalcoholic

Drug Induced Liver Injury: Review with a Focus on Genetic Factors, Tissue Diagnosis, and Treatment Options

Journal of Clinical and Translational Hepatology, 2015

Drug-induced liver injury (DILI) is a rare but potentially life threatening adverse drug reaction. DILI may mimic any morphologic characteristic of acute or chronic liver disease, and the histopathologic features of DILI may be indistinguishable from those of other causes of liver injury, such as acute viral hepatitis. In this review article, we provide an update on causative agents, clinical features, pathogenesis, diagnosis modalities, and outcomes of DILI. In addition, we review results of recently reported genetic studies and updates on pharmacological and invasive treatments.