Exploring Global Solar Radiation: Enhancing Ground-Level Solar Radiation Prediction using Hottel's Semi-Empirical Model and Sunshine Duration Analysis (original) (raw)

Abstract

The effective utilization of solar energy at a specific geographical locale is contingent upon the acquisition and assimilation of comprehensive and meticulous solar radiation data pertinent to that specific site. A profound understanding of these datasets constitutes a pivotal factor in the precision-driven design and dimensioning of solar energy systems. It ensues that the attainment of accurate system dimensioning is contingent upon the continual availability of spatially and temporally resolved measurements. The principal objective of this research endeavor is to expound upon the methodological approach employed in the computation of solar energy parameters, alongside the delineation of the pertinent dataset by extrapolating salient insights. Prior to the initiation of any optimization endeavor, a methodical scrutiny of the geospatial and temporal distribution of solar insolation stands as a preeminent prerequisite, indispensably contributing to the efficacious implementation of solar infrastructure. The assessment of solar energy generation potential within the examined region necessitates a meticulous investigation of the theoretical solar resource inherent to Khouribga. Through a meticulous computation regimen encompassing insolation and solar irradiance metrics, this investigation facilitates the discernment of the optimal incident angle for maximal energy absorption by solar photovoltaic cells.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (27)

  1. A. Toutou, M. Fikry, W. Mohamed, The parametric based optimization framework daylighting and energy performance in residential buildings in hot arid zone, Alexandria Engineering Journal, DOI:10.1016/j.aej.2018.04.006.
  2. D. Patel, B. Patel, Low Cost and Robust Solar Tracking System Based On Data of Daily and Seasonal Variation in Sun Position Regard to Specific Location on Earth, International Journal of Innovative Research in Science, Engineering and Technology, DOI:10.15680/IJIRSET.2014.0309014.
  3. M. Nfaoui, K. El-Hami, Numerical study and modeling of the spatial and temporal distribution of the solar field at Khouribga and the 20 Moroccan cities, American Institute of Physics, AIP Conference Proceedings 1932, 030028 (2018), doi:10.1063/1.5024178.
  4. H. Suehrcke, R. S. Bowden b, K.G.T. Hollands, Relationship between sunshine duration and solar radiation, Solar Energy, Volume 92, June 2013, Pages 160-171.
  5. Hoijeon and Didier Walliang, Le spectre électromagnétique de la lumière, http://astro.vision.free.fr/spectre.php ,2000.
  6. M.R. Rezoug, A. Zaatri, Calcul de la durée optimale d'activité d'un module photovoltaïque en fonction de l'endroit, Revue des Energies Renouvelables Vol. 14 N°1 (2011) 163 -169.
  7. P. Brizemur, Stellarium Jour Sidéral, Equation Temps, IUFM, Paris 21 Février 2006.
  8. A. Vienne, Laboratoire d'Astronomie de Lille de l'Institut de Mécanique Céleste et de Calcul des Ephémérides Lille 1, 'LAL-IMCCE', Observatoire de Paris, UMR 8028, CNRS.
  9. A. Vial, Quelques Idées Reçues sur la Position du Soleil, Bulletin de l'Union des Physiciens, N° 897, pp. 959 -980, 2007.
  10. M. Koussa, A. Malek, M. Haddadi, Apport Energétique de la Poursuite Solaire Sur Deux Axes Par Rapport Aux Systèmes Fixes. Application Aux Capteurs Plans, Revue des Energies Renouvelables, Vol. 10, N°4, pp. 515 -537, 2007.
  11. https://ptaff.ca/crepyscule/?lang=en\_CA, Python source code for creation of sunrise/sunset graphs, Monday, July 24, 2023.
  12. Ahmed Ennaoui, Photovoltaic Solar Energy Conversion (PVSEC), Helmholtz-Zentrum Berlin für Materialien und Energie-Free University of Berlin-Allemand, 2016,
  13. M. Santamouris, G. Mihalakakou, B. Psiloglou, G. Eftaxias, D. N. Asimakopoulos, Modeling the Global Solar Radiation on the Earth's Surface Using Atmospheric Deterministic and Intelligent Data-Driven Techniques, Journal of Climate, Volume 12: Issue 10, doi.org/10.1175/1520-0442-1999.
  14. K.N. Shukla, S.Rangnekar, K. Sudhakar, Mathematical modelling of solar radiation incident on tilted surface for photovoltaic application at Bhopal, M.P., India, International Journal of Ambient Energy, 37:6, 579-588, DOI: 10.1080/01430750.2015.1023834.
  15. T. A. Faiziev, B. M. Toshmamatov, Mathematical model of heat accumulation in the substrate and ground of a heliogreenhouse, IOP Conf. Ser.: Earth Environ. Sci,723 032006 DOI:10.1088/1755-1315/723/3/032006.
  16. J. Chen, Y. Ma, Z. Pang, A mathematical model of global solar radiation to select the optimal shape and orientation of the greenhouses in southern China, Solar Energy, Volume 205, 15 July 2020, Pages 380-389, doi.org/10.1016/j.solener.2020.05.055.
  17. A. Islahi, S. Shakil, M. Hamed, Hottel's Clear Day Model for a typical arid city -Jeddah, International Journal of Engineering Science Invention, Vol 4 -PP.32-37. 2015.
  18. S. Pattarapanitchai, S. Janjai, A semi-empirical model for estimating diffuse solar irradiance under a clear sky condition for a tropical environment, Procedia Engineering, Volume 32, 2012, Pages 421-426.
  19. N. Laaroussi, K. El Azhary, M. Garoum, S. Raefat and A. Feiz, Semi-empirical models for the estimation of global solar irradiance measurements in Morocco, 3rd International Conference on Renewable Energies for Developing Countries (REDEC), Zouk Mosbeh, Lebanon,2016,pp.1-6, doi:10.1109/REDEC.2016.7577505.
  20. P.M.P Garniwa, R.A.A Ramadhan, H.-J Lee, Application of Semi-Empirical Models Based on Satellite Images for Estimating Solar Irradiance in Korea, Application of Semi- Empirical, Appl. Sci. 2021, 11, 3445. https:doi.org/10.3390/app11083445.
  21. M. Nfaoui, K. El-Hami, Extracting the maximum energy from solar panel, Energy Report, 4, pp. 536-545. DOI: 10.1016/j.egyr.2018.05.002, November 2018.
  22. B. Nadiem, Étude et Modélisation du Flux Solaire globale sur surface inclinée dans la région de Touat, Thèse de Doctorat, 2012.
  23. K. Bouchouicha, Modélisation Multispectale des images satellitaire, Application Quantification du bilan d'énergie sol- atmosphère, thèse de Doctorat, 2017.
  24. Hay, J.E., Davies, J.A., Calculations of the solar radiation incident on an inclined surface. In: Hay, J.E., Won, T.K. (Eds.), Proc. of First Canadian Solar Radiation Data Workshop, 59. Ministry of Supply and Services, Canada 1980.
  25. Al-Mostafa ZA, Maghrabi AH, Al-Shehri SM., Sunshine-based global radiation models: a review and case study, Energy Convers Manage 2014;84:209-16, 2014.
  26. Dogniaux R., De l'influence de l'Estimation du Facteur Total de Trouble Atmosphérique sur l'Evaluation du Rayonnement Solaire Direct par Ciel Clair. Application aux Données Radiométriques de l'IRM à Uccle, Institut Royal Météorologique de Belgique (IRM), Miscellanea, Serie C, N°20, 1984
  27. Hay J. Calculation of monthly mean solar radiation for horizontal and tilted surfaces, Solar Energy 1979;23, 1979.