Hydrological responses to changes in forest cover on uplands and peatlands. Chapter 13 (original) (raw)
Related papers
Long-term Forest Management and Climate Effects on Streamflow
Long-term watershed studies are a powerful tool for examining interactions among management activities, streamflow, and climatic variability. Understanding these interactions is critical for exploring the potential of forest management to adapt to or mitigate against the effects of climate change. The Coweeta Hydrologic Laboratory, located in North Carolina, USA, is a 2,185-ha basin wherein forest climate monitoring and watershed experimentation began in the early 1930s. Extensive climate and hydrologic networks have facilitated research in the basin and region for over 75 years. Our purpose was (1) to examine long-term trends in climate and streamflow in reference watersheds, and (2) to synthesize recent work that shows that managed watersheds respond differently to variation in extreme precipitation years than reference watersheds. In the basin and in the region, air temperatures have been increasing since the late 1970s. Drought severity and frequency have also increased over time, and the precipitation distribution has become more variable. Reference watersheds indicate that streamflow is more variable, reflecting precipitation variability. Streamflow of extreme wet and dry years show that watershed responses to management differ significantly in all but a forest with coppice management. Converting deciduous hardwood stands to pine altered the streamflow response to extreme precipitation years the most. High evapotranspiration rate and increased soil water storage in the pine stands may be beneficial to reduce flood risk in wet years, but they create conditions that could exacerbate drought. Our results suggest that forest management can mitigate extreme precipitation years associated with climate change; however, offsetting effects suggest the need for spatially-explicit analyses of risk and vulnerability
On the watershed response to land use/cover change and climate variability in the Prairies
Land use change for agriculture purposes or due to urbanization may change the movement patterns and also sources of water within a watershed boundary. It is of key interest to know how the integrated impact of these disturbances, along with a regime change due to natural climate variability or human induced climate change, affects runoff response behavior of a watershed. This study investigates changes in runoff production behavior of over 50 small to very large watersheds with drainage areas ranging from 35 to 160000 km2 in the North American Prairies. These depression-dominated watersheds which are characterized with strong memory properties have been subjected to diverse human disturbances. Our statistical analysis shows that there has been a range of diverse change in seasonal regimes of runoff as well as changes in snowfall versus rainfall patterns over the study area. This study shows that in watersheds with recorded history of disturbances the impact of human interference, a...