Measuring Human-Animal Interaction with Smartwatches: An Initial Experiment (original) (raw)

FIDO—Facilitating interactions for dogs with occupations: wearable communication interfaces for working dogs

Working dogs have improved the lives of thousands of people throughout history. However, communication between human and canine partners is currently limited. The main goal of the FIDO project is to research fundamental aspects of wearable technologies to support communication between working dogs and their handlers. In this study, the FIDO team investigated on-body interfaces for dogs in the form of wearable technology integrated into assistance dog vests. We created five different sensors that dogs could activate based on natural dog behaviors such as biting, tugging, and nose touches. We then tested the sensors on-body with eight dogs previously trained for a variety of occupations and compared their effectiveness in several dimensions. We were able to demonstrate that it is possible to create wearable sensors that dogs can reliably activate on command, and to determine cognitive and physical factors that affect dogs' success with body–worn interaction technology.

The Challenges of Wearable Computing for Working Dogs

We present two case studies on creating wearables for dogs and discuss them in terms of challenges of safety, space, weight and comfort, that motivated them. You can use these case studies and our design process as a practical primer for designing wearables for working dogs.

Facilitating Interactions for Dogs with Occupations: Wearable Dog-Activated Interfaces

2020

Working dogs have improved the lives of thousands of people. However, communication between human and canine partners is currently limited. The main goal of the FIDO project is to research fundamental aspects of wearable technologies to support communication between working dogs and their handlers. In this pilot study, the FIDO team investigated on-body interfaces for assistance dogs in the form of wearable technology integrated into assistance dog vests. We created four different sensors that dogs could activate (based on biting, tugging, and nose gestures) and tested them on-body with three assistancetrained dogs. We were able to demonstrate that it is possible to create wearable sensors that dogs can reliably activate on command.

Quantifying canine interactions with smart toys assesses suitability for service dog work

Frontiers in Veterinary Science

There are approximately a half million active service dogs in the United States, providing life-changing assistance and independence to people with a wide range of disabilities. The tremendous value of service dogs creates significant demand, which service dog providers struggle to meet. Breeding, raising, and training service dogs is an expensive, time-consuming endeavor which is exacerbated by expending resources on dogs who ultimately will prove to be unsuitable for service dog work because of temperament issues. Quantifying behavior and temperament through sensor-instrumented dog toys can provide a way to predict which dogs will be suitable for service dog work, allowing resources to be focused on the dogs likely to succeed. In a 2-year study, we tested dogs in advanced training at Canine Companions for Independence with instrumented toys, and we discovered that a measure of average bite duration is significantly correlated with a dog's placement success as a service dog [Ad...