Chemosensory Profile of South Tyrolean Pinot Blanc Wines: A Multivariate Regression Approach (original) (raw)
Abstract
A multivariate regression approach based on sensory data and chemical compositions has been applied to study the correlation between the sensory and chemical properties of Pinot Blanc wines from South Tyrol. The sensory properties were identified by descriptive analysis and the chemical profile was obtained by HS-SPME-GC/MS and HPLC. The profiles of the most influencing (positively or negatively) chemical components have been presented for each sensory descriptor. Partial Least Square Regression (PLS) and Principal Component Regression (PCR) models have been tested and applied. Visual (clarity, yellow colour), gustatory (sweetness, sourness, saltiness, bitterness, astringency, and warmness) and olfactory (overall intensity, floral, apple, pear, tropical fruit, dried fruit, fresh vegetative, spicy, cleanness, and off-odours) descriptors have been correlated with the volatile and phenolic profiles, respectively. Each olfactory descriptor was correlated via a PCR model to the volatile ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (27)
- Registro Nazionale delle Varietà di Vite; on-line database published by the public institution "Ministero delle Politiche Agri- cole, Alimentari e Forestali"-CREA SNCV. 2021. Available online: http://catalogoviti.politicheagricole.it/catalogo.php (accessed on 14 July 2021).
- Rapp, A. Volatile flavour of wine: Correlation between instrumental analysis and sensory perception. Nahr. Food 1998, 42, 351-363. [CrossRef]
- Styger, G.; Prior, B.; Bauer, F.F. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145-1159. [CrossRef]
- Riberéau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of enology. In The Microbiology of Wine and Vinifications; John Wiley & Sons: Chichester, UK, 2000; Volume 1.
- Aleixandre-Tudo, J.L.; Weightman, C.; Panzeri, V.; Nieuwoudt, H.H.; du Toit, W.J. Effect of skin contact before and during alcoholic fermentation on the chemical and sensory profile of South African Chenin blanc white wines. S. Afr. J. Enol. Vitic. 2015, 36, 366-377. [CrossRef]
- Aznar, M.; López, R.; Cacho, J.; Ferreira, V. Prediction of aged red wine aroma properties from aroma chemical composition. Partial least squares regression models. J. Agric. Food Chem. 2003, 51, 2700-2707. [CrossRef] [PubMed]
- Cabaroglu, T.; Canbas, A.; Baumes, R.; Bayonove, C.; Lepoutre, J.P.; Günata, Z. Aroma composition of a white wine of Vitis vinifera L. cv. Emir as affected by skin contact. J. Food Sci. 1997, 62, 680-683. [CrossRef]
- García-Romero, E.; Pérez-Coello, M.; Cabezudo, M.D.; Sánchez-Muñoz, G.; Martín-Alvarez, P.J. Fruity flavor increase of Spanish Airén white wines made by brief fermentation skin contact. Food Sci. Technol. Int. 1999, 5, 149-157. [CrossRef]
- Selli, S.; Canbas, A.; Cabaroglu, T.; Erten, H.; Lepoutre, J.P.; Gunata, Z. Effect of skin contact on the free and bound aroma compounds of the white wine of Vitis vinifera L. cv Narince. Food Control. 2004, 17, 75-82. [CrossRef]
- Philipp, C.; Sari, S.; Eder, P.; Patzl-Fischerleitner, E.; Eder, R. Austrian Pinot Blanc wines: Typicity, wine styles and the influence of different oenological decisions on the volatile profile of wines. BIO Web Conf. 2019, 15, 02005. [CrossRef]
- Philipp Christian Eder, P.; Brandes, W.; Patzl-Fischerleitner, E.; Eder, R. The Pear Aroma in the Austrian Pinot Blanc Wine Variety: Evaluation by Means of Sensorial-Analytical-Typograms with regard to Vintage, Wine Styles, and Origin of Wines. J. Food Qual. 2018, 2018, 5123280. [CrossRef]
- Dupas de Matos, A.; Longo, E.; Chiotti, D.; Pedri, U.; Eisenstecken, D.; Sanoll, C.; Robatscher, P.; Boselli, E. Pinot Blanc: Impact of the winemaking variables on the evolution of the phenolic, volatile and sensory profiles. Foods 2020, 9, 499. [CrossRef]
- Tournier, C.; Sulmont-Rossé, C.; Guichard, E. Flavour perception: Aroma, taste and texture interactions. Food 2007, 1, 246-257.
- Poinot, P.; Arvisenet, G.; Ledauphin, J.; Gaillard, J.L.; Prost, C. How can aroma-related cross-modal interactions be analysed? A review of current methodologies. Food Qual. Prefer. 2013, 28, 304-316. [CrossRef]
- Wold, H. Estimation of Principal Components and Related Models by Iterative Least Squares; Multivariate Analysis; Academic Press: Cambridge, MA, USA, 1966; pp. 391-420.
- Lawless, H. Dimensions of sensory quality: A critique. Food Qual. Prefer. 1995, 6, 191-199. [CrossRef]
- Charters, S.; Pettigrew, S. The dimensions of wine quality. Food Qual. Prefer. 2007, 18, 997-1007. [CrossRef]
- Moskowitz, H.R. Food quality: Conceptual and sensory aspects. Food Qual. Prefer. 1995, 6, 157-162. [CrossRef]
- Kraggerud, H.; Solem, S.; Abrahamsen, R.K. Quality scoring-A tool for sensory evaluation of cheese? Food Qual. Prefer. 2012, 26, 221-230. [CrossRef]
- Maynard, A.A.; Pangborn, R.M.; Roessler, E.B. Principles of Sensory Evaluation of Food, 1st ed.; Academic Press: Cambridge, MA, USA, 1965. [CrossRef]
- Bodyfelt, F.W.; Drake, M.A.; Rankin, S.A. Developments in dairy foods sensory science and education: From student contests to impact on product quality. Int. Dairy J. 2008, 18, 729-734. [CrossRef]
- Antalick, G.; Perello, M.C.; de Revel, G. Development, validation and application of a specific method for the quantitative determination of wine esters by headspace-solid-phase microextraction-gas chromatography-mass spectrometry. Food Chem. 2010, 121, 1236-1245. [CrossRef]
- Linstrom, P.J.; Mallard, W.G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021; p. 20899. [CrossRef]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463-471. [CrossRef]
- XLSTAT Help. 2020. Available online: https://www.xlstat.com (accessed on 23 April 2021).
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109-130. [CrossRef]
- Bastien, P.; Esposito Vinzi, V.; Tenenhaus, M. PLS Generalised Regression. Comput. Stat. Data Anal. 2005, 48, 17-46. [CrossRef]