Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications (original) (raw)

Abstract

A series of polybenzimidazole copolymers with varied content of pendant amino groups have been synthesized by condensation polymerization of 4,4'-dicarboxydiphenyl ether (DCDPE), 5-aminoisophthalic acid (APTA) and 3,3'-diaminobenzidine (DAB) in polyphosphoric acid at 190 ºC for 20 h. The resulting copolymers undergo post-sulfonatation in fuming sulfuric acid at 100 ºC yielded the highly sulfonated polybenzimidazoles (SOPBI-NH 2 (x/y), 'x/y' refers to the monomer molar ratio of DCDPE to APTA). A series of covalently cross-linked membranes (CSOPBI-NH 2 (x/y)) with good mechanical properties are fabricated by solution cast technique using bisphenol A epoxy resin as a cross-linker. The CSOPBI membranes show 3-4 orders of magnitude lower VO 2+ permeability and 6 -30 times higher ion diffusion selectivity (proton vs. VO 2+ ) than Nafion117. The charge-discharge behaviors of the vanadium redox flow batteries (VRBs) assembled with the CSOPBI-NH 2 (x/y) membranes and Nafion 117 are investigated and compared. The VRBs assembled with the CSOPBI membranes exhibit significantly higher columbic efficiency and lower self-discharge rate than that assembled with Nafion 117 owing to the extremely lower vanadium cations crossover of the former. The VRB assembled with the CSOPBI-NH 2 (9/1) membrane exhibits fairly high energy efficiency (~85% at 60 mA cm -2 ) and little decay in performance is observed after 300 charge-discharge cycles.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (53)

  1. E. Sum, M. Skyllas-Kazacos, A study of the V(II)/V(III) redox couple for redox flow cell applications. J. Power Sources 15 (1985) 179-190.
  2. E. Sum, M. Rychcik, M. Skyllas-Kazacos, Investigation of the V (V)/V (IV) system for use in the positive half-cell of a redox battery, J. Power sources, 16 (1985) 85-95.
  3. A. Shibata, K. Sato, Development of vanadium redox flow battery for electricity storage, Power Eng. J. 13 (1999) 130-135.
  4. W. Y. Hsu, T. D. Gierke, Elastic theory for ionic clustering in perfluorinated ionomers, Macromolecules 15 (1982) 101-105.
  5. W. Y. Hsu, T. D. Gierke, Ion transport and clustering in nafion perfluorinated membranes, J. Membr. Sci. 13 (1983) 307-326.
  6. C.-H. Lin, M.-C. Yang, H.-J. Wei, Amino-silica modified Nafion membrane for vanadium redox flow battery, J. Power Sources 282 (2015) 562-571.
  7. J. Kim, J.-D. Jeon, S.-Y. Kwak, Nafion-based composite membrane with a permselective layered silicate layer for vanadium redox flow battery, Electrochem. Commun. 38 (2014) 68-70.
  8. X. Teng, J. Dai, J. Su, Y. Zhu, H. Liu, Z. Song, A high performance polytetrafluoroethene/Nafion composite membrane for vanadium redox flow battery application, J. Power Sources 240 (2013) 131-139.
  9. X. Teng, J. Dai, F. Bi, G. Yin, Ultra-thin polytetrafluoroethene/Nafion/silica composite membrane with high performance for vanadium redox flow battery, J. Power Sources 272 (2014) 113-120.
  10. Z. Mai, H. Zhang, X. Li, S. Xiao, H. Zhang, Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application, J. Power Sources 196 (2011) 5737-5741.
  11. B. Schwenzer, S. Kim, M. Vijayakumar, Z. Yang, J. Liu, Correlation of structural differences between Nafion/polyaniline and Nafion/polypyrrole composite membranes and observed transport properties, J. Membr. Sci. 372 (2011) 11-19.
  12. J. Zeng, C. Jiang, Y. Wang, J. Chen, S. Zhu, B. Zhao, R. Wang, Studies on polypyrrole modified nafion membrane for vanadium redox flow battery, Electrochem. Commun. 10 (2008) 372-375.
  13. J. Ma, S. Wang, J. Peng, J. Yuan, C. Yu, J. Li, X. Ju, M. Zhai, Covalently incorporating a cationic charged layer onto Nafion membrane by radiation-induced graft copolymerization to reduce vanadium ion crossover, Eur. Polym. J. 49 (2013) 1832-1840.
  14. Q. Luo, H. Zhang, J. Chen, P. Qian, Y. Zhai, Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications, J. Membr. Sci. 311 (2008) 98-103.
  15. J.B. Liao, M.Z. Lu, Y.Q. Chu, J.L. Wang, Ultra-low vanadium ion diffusion amphoteric ion-exchange membranes for all-vanadium redox flow batteries, J. Power Sources 282 (2015) 241-247.
  16. S. Winardi, S. C. Raghu, M. O. Oo, Q. Yan, N. Wai, T. M. Lim, M. Skyllas-Kazacos, Sulfonated poly (ether ether ketone)-based proton exchange membranes for vanadium redox battery applications, J. Membr. Sci. 450 (2014) 313-322.
  17. W. Dai, L. Yu, Z. Li, J. Yan, L. Liu, J. Xi, X. Qiu, Sulfonated poly(ether ether ketone)/graphene composite membrane for vanadium redox flow battery, Electrochim. Acta 132 (2014) 200-207.
  18. F. Wang, J. M. Sylvia, M. M. Jacob, D. Peramunage, Amphiphilic block copolymer membrane for vanadium redox flow battery, J. Power Sources 242 (2013) 575-580.
  19. N. Wang, J. Yu, Z. Zhou, D. Fang, S. Liu, Y. Liu, SPPEK/TPA composite membrane as a separator of vanadium redox flow battery, J. Membr. Sci. 437 (2013) 114-121.
  20. Z. Li, J. Xi, H. Zhou, L. Liu, Z. Wu, X. Qiu, L. Chen, Preparation and characterization of sulfonated poly(ether ether ketone)/ poly(vinylidene fluoride) blend membrane for vanadium redox flow battery application, J. Power Sources 237 (2013) 132-140.
  21. S. Macksasitorn, S. Changkhamchom, A. Sirivat, K. Siemanond, Sulfonated poly(ether ether ketone) and sulfonated poly(1,4-phenylene ether ether sulfone) membranes for vanadium redox flow batteries, High Perform. Polym. 24 (2012) 603-608.
  22. C. Jia, J. Liu, C. Yan, A significantly improved membrane for vanadium redox flow battery, J. Power Sources 195 (2010) 4380-4383.
  23. L. Semiz, N. D. Sankir, M. Sankir, Directly copolymerized disulfonated poly(arylene ether sulfone) membranes for vanadium redox flow batteries, Int. J. Electrochem. Sci. 9 (2014) 3060-3067.
  24. B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, Z. Yang, Membrane development for vanadium redox flow batteries, ChemSusChem 4 (2011) 1388-1406.
  25. D. Chen, S. Wang, M. Xiao, Y. Meng, Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery, Energ. Convers. Manage. 51 (2010) 2816-2824.
  26. B. Yin, Z. Li, W. Dai, L. Wang, L. Yu, J. Xi, Highly branched sulfonated poly(fluorenyl ether ketone sulfone)s membrane for energy efficient vanadium redox flow battery, J. Power Sources 285 (2015) 109-118.
  27. L. Cao, Q. Sun, Y. Gao, L. Liu, H. Shi, Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery, Electrochim. Acta 158 (2015) 24-34.
  28. J. Li, Y. Zhang, S. Zhang, X. Huang, Sulfonated polyimide/s-MoS2 composite membrane with high proton selectivity and good stability for vanadium redox flow battery, J. Membr. Sci. 490 (2015) 179-189.
  29. Y. Zhang, J. Li, H. Zhang, S. Zhang, X. Huang, Sulfonated polyimide membranes with different non-sulfonated diamines for vanadium redox battery applications, Electrochim. Acta 150 (2014) 114-122.
  30. J. Li, Y. Zhang, L. Wang, Preparation and characterization of sulfonated polyimide/TiO2 composite membrane for vanadium redox flow battery, J. Solid State Electrochem. 18 (2014) 729-737.
  31. C. Fujimoto, S. Kim, R. Stains, X. Wei, L. Li, Z. G. Yang, Vanadium redox flow battery efficiency and durability studies of sulfonated Diels Alder poly(phenylene)s, Electrochem. Commun. 20 (2012) 48-51.
  32. J. Qiu, L. Zhao, M. Zhai, J. Ni, H. Zhou, J. Peng, J. Li, G. Wei, Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries, J. Power Sources 177 (2008) 617-623.
  33. B. Zhang, E. Zhang, G. Wang, P. Yu, Q. Zhao, F. Yao, Poly(phenyl sulfone) anion exchange membranes with pyridinium groups for vanadium redox flow battery applications, J. Power Sources 282 (2015) 328-334.
  34. W. Xu, Y. Zhao, Z. Yuan, X. Li, H. Zhang, I. F. J. Vankelecom, Highly stable anion exchange membranes with internal cross-linking networks, Adv. Funct. Mater. 25 (2015) 2583-2589.
  35. C. W. Hwang a, H.-M. Park, C. M. Oh, T. S. Hwang, J. Shim, C.-S. Jin, Synthesis and characterization of vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene anion-exchange membrane for all-vanadium redox flow battery, J. Membr. Sci. 468 (2014) 98-106.
  36. H.-S. Choi, Y.-H. Oh, C.-H. Ryu, G.-J. Hwang, Characteristics of the all-vanadium redox flow battery using anion exchange membrane, J. Taiwan Inst. Chem. Eng. 45 (2014) 2920-2925.
  37. C.-N. Sun, Z. Tang, C. Belcher, T. A. Zawodzinski, C. Fujimoto, Evaluation of Diels-Alder poly(phenylene) anion exchange membranes in all-vanadium redox flow batteries, Electrochem. Commun. 43 (2014) 63-66.
  38. S.-J. Seo, B.-C. Kim, K.-W. Sung, J. Shim, J.-D. Jeon, K.-H. Shin, S.-H. Shin, S.-H. Yun, J.-Y. Lee, S.-H. Moon, Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications, J. Membr. Sci. 428 (2013) 17-23.
  39. P.K. Leung, Q. Xu, T.S. Zhao, L. Zeng, C. Zhang, Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries, Electrochim. Acta 105 (2013) 584-592.
  40. J. Fang, H. Xu, X. Wei, M. Guo, X. Lu, C. Lan, Y. Zhang, Y. Liu, T. Peng, Preparation and characterization of quaternized poly (2,2,2-trifluoroethyl methacrylate-co-N-vinylimidazole) membrane for vanadium redox flow battery, Polym. Adv. Technol. 24 (2013) 168-173.
  41. Z. Mai, H. Zhang, H. Zhang, W. Xu, W. Wei, H. Na, X. Li, Anion-Conductive Membranes with Ultralow Vanadium Permeability and Excellent Performance in Vanadium Flow Batteries, ChemSusChem 6 (2013) 328-335.
  42. S. Zhang, C. Yin, D. Xing, D. Yang, X. Jian, Preparation of chloromethylated/quaternized poly(phthalazinone ether ketone) anion exchange membrane materials for vanadium redox flow battery applications, J. Membr. Sci. 363 (2010) 243-249.
  43. H. Vogel, C. S. Marvel, Polybenzimidazoles, new thermally stable polymers, J. Polym. Sci. L (1961) 511-539.
  44. H. Xu, K. Chen, X. Guo, J. Fang, J. Yin, Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application, Polymer 48 (2007) 5556-5564.
  45. N. Xu, X. Guo, J. Fang, H. Xu, J. Yin, Synthesis of Novel Polybenzimidazoles with Pendant Amino Groups and the Formation of their Crosslinked Membranes for Medium Temperature Fuel Cell Applications, J. Polym. Sci. 47 (2009) 6992-7002.
  46. X.L. Zhou, T.S. Zhao , L. An, L. Wei, C. Zhang, The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance, Electrochim. Acta 153 (2015) 492-498.
  47. J. Qiu, M. Li, J. Ni, M. Zhai, J. Peng, L. Xu, H. Zhou, J. Li, G. Wei, Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery, J. Membr. Sci. 297 (2007) 174-180.
  48. H.-Z. Zhang, H.-A. Zhang, X. Li, Z. Mai, W. Wei, Silica modified nanofiltration membranes with improved selectivity for redox flow battery application, Energy Environ. Sci., 5 (2012) 6299-6303.
  49. R. Bouchet, E. Siebert, Proton conduction in acid doped polybenzimidazole, Solid State Ionics 118 (1999) 287-299.
  50. J. A. Asensio, S. Borros, P. Gomez-Romero, Proton-conducting Polymers Based on Benzimidazoles and Sulfonated Benzimidazoles, J. Polym. Sci. Part A, Polym. Chem. 40 (2002) 3703-3710.
  51. X. Xu, L. Li, H. Wang, X. Li, X. Zhuang, Solution blown sulfonated poly(ether ether ketone) nanofiber-Nafion composite membranes for proton exchange membrane fuel cells, RSC Adv. 5 (2015) 4934-4940.
  52. X. Luo, Z. Lu, J. Xi, Z. Wu, W. Zhu, L. Chen, X. Qiu, Influences of permeation of vanadium ions through PVDF-g-PSSA membranes on performances of vanadium redox flow batteries, J. Phys. Chem. B 109 (2005) 20310-20314.
  53. C. Sun, J. Chen, H. Zhang, X. Han, Q. Luo, Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery, J. Power Sources 195 (2010) 890-897.