Time dependent resonance theory (original) (raw)
1998, Geometric and Functional Analysis
Abstract
An important class of resonance problems involves the study of per-turbations of systems having embedded eigenvalues in their contin-uous spectrum. Problems with this mathematical structure arise in the study of many physical systems, eg the coupling of an atom or molecule to a ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (52)
- S. Agmon, I. Herbst & E. Skibsted, Perturbation of embedded eigenvalues in the generalized N-body problem, Commun. Math. Phys. 122 (1989) 411-438.
- J. Aguilar & J.M. Combes, A class of analytic perturbations for one body Schrödinger Hamiltonians, Comm. Math. Phys. 22 (1971) 269-279.
- L. Alan & J.H. Eberley, Optical Resonance and Two Level Atoms, Dover 1987.
- W.O. Amrein, A.B. de Monvel & V. Georgescu, C 0 -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Progress in Mathematics 135, Birkhäuser (1996)
- E. Balslev & J.M. Combes, Spectral properties of many-body Schrödinger operators with dilation analytic interactions, Comm. Math, Phys. 22 (1971) 280-294
- B. Birnir, H.P. McKean & A. Weinstein, The rigidity of sine-Gordon breathers, Commun. Pure Appl. Math. 47 (1994) 1043-1051
- V. Bach, J. Fröhlich & I.M. Sigal, Mathematical theory of nonrelativistic matter and radi- ation, Lett. Math. Phys. 34 (1995), no. 3, 183-201.
- V. Bach, J. Fröhlich, I.M. Sigal, & A. Soffer, Positive commutators and the spectrum of nonrelativistic QED, submitted.
- J.M. Combes & P. Hislop, Schrödinger Operators. The quantum mechanical many body problem ed. E. Balslev, Lectures Notes in Physics 403, Springer 1992
- H.L. Cycon, R.G. Froese, W. Kirsch & B. Simon, Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Springer-Verlag Berlin-Heidelberg-New York 1987.
- J.D. Crawford & P.D. Hislop, Application of the method of spectral deformation to the Vlasov-Poisson system, Ann. Phys. (1989), 265-317.
- M. Demuth, On the perturbation theory of unstable isolated eigenvalues, Math. Nachr. 64 (1974) 345-356.
- P.A.M. Dirac, Principles of Quantum Mechanics, Oxford University Press, London, 1947.
- K.O. Friedrichs, On the perturbation of continuous spectra, Commun. Pure Appl. Math. 1 (1948) 361-406.
- R. Froese & I. Herbst, Exponential bounds and absence of positive eigenvalues for N-body Schrödinger Operators, Comm. Math. Phys. 87 (1982) 429-447
- C. Gérard, Asymptotic completeness for the spin-boson model with a particle number cutoff, preprint 1995.
- C. Gérard & I.M. Sigal, Space-time picture of semiclassical resonances, Commun. Math. Phys. 145 (1992) 281-328.
- B. Helffer & J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) #24-25 (1986)
- P. Hislop & I.M. Sigal, Introduction to Spectral Theory with Applications to Schrödinger Operators, Applied Mathematical Sciences Volume 113 Springer (1996)
- J.S. Howland, Scattering theory for Hamiltonians periodic in time, Indiana Math. J. 28 (1979) 471-494.
- W. Hunziker, Resonances, metastable states and exponential decay laws in perturbation theory, Commun. Math. Phys. 132 (1990) 177-188.
- W. Hunziker & I.M. Sigal, to appear.
- V. Jaksić & C.-A. Pillet, On a model for quantum friction. I. Fermi's golden rule and dynamics at zero temperature, Ann. Inst. H. Poincare Phys. Theor. 62 (1995), 47-68.
- V. Jaksić & C.-A. Pillet, On a model for quantum friction II. Fermi's golden rule and dynamics at positive temperature, Comm. Math. Phys. 176 (1996), 619-644.
- A. Jensen & T. Kato, Spectral properties of Schrödinger operators and time decay of the wave functions, Duke Math. J. 46 (1979) 583-611
- A. Jensen, E. Mourre & P. Perry, Multiple Commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Poincaré -Phys. Théor. 41 (1984) 207-225.
- J. L. Journé, A. Soffer & C. Sogge, L p → L p ′ Estimates for time dependent Schródinger Equations, Bull. AMS, 23, No 2 (1990)
- C. King, Scattering theory for a model of an atom in a quantized field, Lett. Math. Phys. 25 (1992) 17-28
- C. King, Resonant decay of two state atom interacting with a massless non-relativistic quantized scalar field, Commun. Math. Phys. 165 (1994) 569-594
- L. Landau, Das Dämpfungsproblem in der Wellenmechanik, ZS. f. Phys., 45 (1927) 430-441.
- L.D. Landau & E.M. Lifshitz, Quantum Mechanics -Nonrelativistic Theory, 2nd ed. Pergammon, New York 1965.
- P.D. Lax & R.S. Phillips, Scattering Theory, Academic Press New York 1967.
- A. Orth, Quantum mechanical resonance and limiting absorption-the many body problem, Comm. Math. Phys. 126 (1990) 559-573.
- P. Perry, I.M. Sigal & B. Simon, Spectral analysis of N-body Schrödinger operators, Ann. Math. 114 (1981) 519-567.
- R.L. Pego & M.I. Weinstein, Asymptotic stability of solitary waves, Commun. Math. Phys. 164 (1994) 305-349.
- E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Com- mun. Math. Phys. 78 (1981) 391
- R.S. Phillips & P. Sarnak, Automorphic spectrum and Fermi's golden rule, J. D'Anal. Math. 59 (1992) 179-187.
- R. Pyke & I.M. Sigal, preprint, 1996.
- M. Reed & B. Simon, Modern Methods of Mathematical Physics IV. Analysis of Operators, Academic Press New York 1978.
- E. Skibsted, Truncated Gamow functions, α decay and the exponential law, Commun. Math. Phys. 104 (1986) 591-604.
- H. Segur & M.D. Kruskal, Nonexistence of small amplitude breather solutions in φ 4 theory, Phys. Rev. Lett., 58 (1986) 747
- I.M. Sigal, Nonlinear Wave and Schrödinger Equations, Comm. Math. Phys. 153 (1993) 297-320.
- I.M. Sigal, General characteristics of nonlinear dynamics, in Spectral and Scattering The- ory; Proceedings of the Taniguchi International Workshop, ed. M. Ikawa, Marcel Dekker, Inc. New York -Basel -Hong Kong 1994.
- I.M. Sigal, On long range scattering, Duke J. Math. 60 (1990) 307-315.
- I.M. Sigal & A. Soffer, Local Decay and Velocity bounds for quantum propagation, (1988) preprint, ftp: // www.math.rutgers.edu /pub/ soffer
- A. Soffer & M.I. Weinstein, Time dependent resonance theory and the perturbations of em- bedded eigenvalues, to appear in Proceedings of Conference on Partial Differential Equations and Applications, Toronto June 1995, CRM Lecture notes. Eds. P. Greiner, V. Ivrii, L. Seco and C. Sulem.
- A. Soffer & M.I. Weinstein, Time dependent resonance theory, 1995 preprint.
- A. Soffer & M.I. Weinstein, The large time behavior of the nonlinear Schrödinger equation: selection of the ground state and instability of excited states, in preparation.
- A. Soffer & M.I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, preprint.
- A. Soffer & M.I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations I,II, Comm. Math. Phys. 133 (1990) 119-146; J. Diff. Eqs., 98 (1992) 376-390
- R. Waxler, The time evolution of metastable states, Commun. Math. Phys. 172 (1995) 535-549.
- V. Weisskopf & E. Wigner, Berechnung der natürlichen Linienbreite auf Grund der Dirac- schen Lichttheorie, Z. Phys 63 (1930) 54-73.