Time dependent resonance theory (original) (raw)

1998, Geometric and Functional Analysis

Abstract

An important class of resonance problems involves the study of per-turbations of systems having embedded eigenvalues in their contin-uous spectrum. Problems with this mathematical structure arise in the study of many physical systems, eg the coupling of an atom or molecule to a ...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (52)

  1. S. Agmon, I. Herbst & E. Skibsted, Perturbation of embedded eigenvalues in the generalized N-body problem, Commun. Math. Phys. 122 (1989) 411-438.
  2. J. Aguilar & J.M. Combes, A class of analytic perturbations for one body Schrödinger Hamiltonians, Comm. Math. Phys. 22 (1971) 269-279.
  3. L. Alan & J.H. Eberley, Optical Resonance and Two Level Atoms, Dover 1987.
  4. W.O. Amrein, A.B. de Monvel & V. Georgescu, C 0 -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Progress in Mathematics 135, Birkhäuser (1996)
  5. E. Balslev & J.M. Combes, Spectral properties of many-body Schrödinger operators with dilation analytic interactions, Comm. Math, Phys. 22 (1971) 280-294
  6. B. Birnir, H.P. McKean & A. Weinstein, The rigidity of sine-Gordon breathers, Commun. Pure Appl. Math. 47 (1994) 1043-1051
  7. V. Bach, J. Fröhlich & I.M. Sigal, Mathematical theory of nonrelativistic matter and radi- ation, Lett. Math. Phys. 34 (1995), no. 3, 183-201.
  8. V. Bach, J. Fröhlich, I.M. Sigal, & A. Soffer, Positive commutators and the spectrum of nonrelativistic QED, submitted.
  9. J.M. Combes & P. Hislop, Schrödinger Operators. The quantum mechanical many body problem ed. E. Balslev, Lectures Notes in Physics 403, Springer 1992
  10. H.L. Cycon, R.G. Froese, W. Kirsch & B. Simon, Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Springer-Verlag Berlin-Heidelberg-New York 1987.
  11. J.D. Crawford & P.D. Hislop, Application of the method of spectral deformation to the Vlasov-Poisson system, Ann. Phys. (1989), 265-317.
  12. M. Demuth, On the perturbation theory of unstable isolated eigenvalues, Math. Nachr. 64 (1974) 345-356.
  13. P.A.M. Dirac, Principles of Quantum Mechanics, Oxford University Press, London, 1947.
  14. K.O. Friedrichs, On the perturbation of continuous spectra, Commun. Pure Appl. Math. 1 (1948) 361-406.
  15. R. Froese & I. Herbst, Exponential bounds and absence of positive eigenvalues for N-body Schrödinger Operators, Comm. Math. Phys. 87 (1982) 429-447
  16. C. Gérard, Asymptotic completeness for the spin-boson model with a particle number cutoff, preprint 1995.
  17. C. Gérard & I.M. Sigal, Space-time picture of semiclassical resonances, Commun. Math. Phys. 145 (1992) 281-328.
  18. B. Helffer & J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) #24-25 (1986)
  19. P. Hislop & I.M. Sigal, Introduction to Spectral Theory with Applications to Schrödinger Operators, Applied Mathematical Sciences Volume 113 Springer (1996)
  20. J.S. Howland, Scattering theory for Hamiltonians periodic in time, Indiana Math. J. 28 (1979) 471-494.
  21. W. Hunziker, Resonances, metastable states and exponential decay laws in perturbation theory, Commun. Math. Phys. 132 (1990) 177-188.
  22. W. Hunziker & I.M. Sigal, to appear.
  23. V. Jaksić & C.-A. Pillet, On a model for quantum friction. I. Fermi's golden rule and dynamics at zero temperature, Ann. Inst. H. Poincare Phys. Theor. 62 (1995), 47-68.
  24. V. Jaksić & C.-A. Pillet, On a model for quantum friction II. Fermi's golden rule and dynamics at positive temperature, Comm. Math. Phys. 176 (1996), 619-644.
  25. A. Jensen & T. Kato, Spectral properties of Schrödinger operators and time decay of the wave functions, Duke Math. J. 46 (1979) 583-611
  26. A. Jensen, E. Mourre & P. Perry, Multiple Commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Poincaré -Phys. Théor. 41 (1984) 207-225.
  27. J. L. Journé, A. Soffer & C. Sogge, L p → L p ′ Estimates for time dependent Schródinger Equations, Bull. AMS, 23, No 2 (1990)
  28. C. King, Scattering theory for a model of an atom in a quantized field, Lett. Math. Phys. 25 (1992) 17-28
  29. C. King, Resonant decay of two state atom interacting with a massless non-relativistic quantized scalar field, Commun. Math. Phys. 165 (1994) 569-594
  30. L. Landau, Das Dämpfungsproblem in der Wellenmechanik, ZS. f. Phys., 45 (1927) 430-441.
  31. L.D. Landau & E.M. Lifshitz, Quantum Mechanics -Nonrelativistic Theory, 2nd ed. Pergammon, New York 1965.
  32. P.D. Lax & R.S. Phillips, Scattering Theory, Academic Press New York 1967.
  33. A. Orth, Quantum mechanical resonance and limiting absorption-the many body problem, Comm. Math. Phys. 126 (1990) 559-573.
  34. P. Perry, I.M. Sigal & B. Simon, Spectral analysis of N-body Schrödinger operators, Ann. Math. 114 (1981) 519-567.
  35. R.L. Pego & M.I. Weinstein, Asymptotic stability of solitary waves, Commun. Math. Phys. 164 (1994) 305-349.
  36. E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Com- mun. Math. Phys. 78 (1981) 391
  37. R.S. Phillips & P. Sarnak, Automorphic spectrum and Fermi's golden rule, J. D'Anal. Math. 59 (1992) 179-187.
  38. R. Pyke & I.M. Sigal, preprint, 1996.
  39. M. Reed & B. Simon, Modern Methods of Mathematical Physics IV. Analysis of Operators, Academic Press New York 1978.
  40. E. Skibsted, Truncated Gamow functions, α decay and the exponential law, Commun. Math. Phys. 104 (1986) 591-604.
  41. H. Segur & M.D. Kruskal, Nonexistence of small amplitude breather solutions in φ 4 theory, Phys. Rev. Lett., 58 (1986) 747
  42. I.M. Sigal, Nonlinear Wave and Schrödinger Equations, Comm. Math. Phys. 153 (1993) 297-320.
  43. I.M. Sigal, General characteristics of nonlinear dynamics, in Spectral and Scattering The- ory; Proceedings of the Taniguchi International Workshop, ed. M. Ikawa, Marcel Dekker, Inc. New York -Basel -Hong Kong 1994.
  44. I.M. Sigal, On long range scattering, Duke J. Math. 60 (1990) 307-315.
  45. I.M. Sigal & A. Soffer, Local Decay and Velocity bounds for quantum propagation, (1988) preprint, ftp: // www.math.rutgers.edu /pub/ soffer
  46. A. Soffer & M.I. Weinstein, Time dependent resonance theory and the perturbations of em- bedded eigenvalues, to appear in Proceedings of Conference on Partial Differential Equations and Applications, Toronto June 1995, CRM Lecture notes. Eds. P. Greiner, V. Ivrii, L. Seco and C. Sulem.
  47. A. Soffer & M.I. Weinstein, Time dependent resonance theory, 1995 preprint.
  48. A. Soffer & M.I. Weinstein, The large time behavior of the nonlinear Schrödinger equation: selection of the ground state and instability of excited states, in preparation.
  49. A. Soffer & M.I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, preprint.
  50. A. Soffer & M.I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations I,II, Comm. Math. Phys. 133 (1990) 119-146; J. Diff. Eqs., 98 (1992) 376-390
  51. R. Waxler, The time evolution of metastable states, Commun. Math. Phys. 172 (1995) 535-549.
  52. V. Weisskopf & E. Wigner, Berechnung der natürlichen Linienbreite auf Grund der Dirac- schen Lichttheorie, Z. Phys 63 (1930) 54-73.