Hydrological Study and Hydraulic Modeling of Flood Risk in the Watershed of the Oued Lahdar (Upper Inaouene, Morocco) (original) (raw)

Estimation of flood influencing characteristics of watershed and their impact on flooding in data-scarce region

Annals of GIS, 2021

The research is focused on the integrated use of satellite remote sensing, Geographic Information System (GIS), and extensive field observation techniques for a better understanding of the impacts of watershed characteristics on hydrological processes and floods. It aims to create a methodology for assessing flood hazards and risk on a regional and local scale so that protective measures can be designed. Floods have occurred in the study area for many years, causing serious damage to infrastructure and civic structures. The present study evaluates the linear, aerial and relief morphometric parameters using the Cartosat-1 digital elevation model (30 metres) along with the curve number for assessing the flood influencing characteristics of the Vishwamitri River's subwatersheds. The study prioritizes five sub-watersheds as high, medium, and low based on their flood influencing characteristics and compound value, as a result, needs the highest priority for flood mitigation measures. The sub-watersheds I and IV of Vishwamitri watershed have been categorized into high priority, sub-watersheds II and V into moderate priority, and subwatershed III into low priority. The geologic stage of development and erosion proneness of the watershed is quantified by hypsometric integral bearing value as 0.04, indicating the landscape to be in monadnock phase in landscape evolution indicative of a marked old stage in the basin's evolution. Moreover, the ability of the rain-on-grid model at the watershed scale to simulate flood events and predict flood-prone areas, considering multiple rain gauge data, which will facilitate more accurate flood inundation where ground-based observational data are unavailable is shown.

Use of a geomorphological transfer function to model design floods in small hillside catchments in semiarid Tunisia

Journal of Hydrology, 2004

In the beginning of the 1990s, the Tunisian Ministry of Agriculture launched an ambitious program for constructing small hillside reservoirs in the northern and central region of the country. At present, more than 720 reservoirs have been created. They consist of small compacted earth dams supplied with a horizontal overflow weir. Due to lack of hydrological data and the area's extreme floods, however, it is very difficult to design the overflow weirs. Also, catchments are very sensitive to erosion and the reservoirs are rapidly silted up. Consequently, prediction of flood volumes for important rainfall events becomes crucial. Few hydrological observations, however, exist for the catchment areas. For this purpose a geomorphological model methodology is presented to predict shape and volume of hydrographs for important floods. This model is built around a production function that defines the net storm rainfall (portion of rainfall during a storm which reaches a stream channel as direct runoff) from the total rainfall (observed rainfall in the catchment) and a transfer function based on the most complete possible definition of the surface drainage system. Observed rainfall during 5-min time steps was used in the model. The model runoff generation is based on surface drainage characteristics which can be easily extracted from maps. The model was applied to two representative experimental catchments in central Tunisia. The conceptual rainfall-runoff model based on surface topography and drainage network was seen to reproduce observed runoff satisfactory. The calibrated model was used to estimate runoff from 5, 10, 20, and 50 year rainfall return periods regarding runoff volume, maximum runoff, as well as the general shape of the runoff hydrograph. Practical conclusions to design hill reservoirs and to extrapolate results using this model methodology for ungauged small catchments in semiarid Tunisia are made.