Nonparametric Adjustment for Measurement Error in Time-to-Event Data: Application to Risk Prediction Models (original) (raw)
Mismeasured time to event data used as a predictor in risk prediction models will lead to inaccurate predictions. This arises in the context of self-reported family history, a time to event predictor often measured with error, used in Mendelian risk prediction models. Using validation data, we propose a method to adjust for this type of error. We estimate the measurement error process using a nonparametric smoothed Kaplan-Meier estimator, and use Monte Carlo integration to implement the adjustment. We apply our method to simulated data in the context of both Mendelian and multivariate survival prediction models. Simulations are evaluated using measures of mean squared error of prediction (MSEP), area under the response operating characteristics curve (ROC-AUC), and the ratio of observed to expected number of events. These results show