Post-secretory events alter the peptide content of the skin secretion of< i> Hypsiboas raniceps (original) (raw)
Related papers
Biomolecules
The number of multidrug-resistant pathogenic microorganisms has been growing in recent years, most of which is due to the inappropriate use of the commercial antibiotics that are currently available. The dissemination of antimicrobial resistance represents a serious global public health problem. Thus, it is necessary to search for and develop new drugs that can act as antimicrobial agents. Antimicrobial peptides are a promising alternative for the development of new therapeutic drugs. Anurans’ skin glands are a rich source of broad-spectrum antimicrobial compounds and hylids, a large and diverse family of tree frogs, are known as an important source of antimicrobial peptides. In the present study, two novel antimicrobial peptides, named Raniseptins-3 and -6, were isolated from Boana raniceps skin secretion and their structural and biological properties were evaluated. Raniseptins-3 and -6 are cationic, rich in hydrophobic residues, and adopt an α-helix conformation in the presence o...
Novel Antimicrobial Peptides Isolated from Skin Secretions of the Mexican Frog Hyla eximia
Protein and Peptide Letters, 2009
High-resolution mass spectrometry-based peptidomics has been used to characterize several components in electro-stimulated skin secretions of the endemic Mexican frog Pachymedusa dacnicolor. Peptide mass screening performed in an Orbitrap-XL mass spectrometer showed that P. dacnicolor skin secretions possess 194 different components with molecular masses ranging mainly from 500 to 6,000 Da. Dozens of molecules were partially sequenced including two novel protease inhibitors. Additionally, one posttranslationally modified bradykinin and two novel dermaseptin-like antimicrobial peptides were fully sequenced. The novel peptide named here DMS-DA5 was fully characterized and showed potent antibacterial activity against various bacteria such as Escherichia coli, Bacillus subtilis, Salmonella enterica serovar typhimurium, and Pseudomonas aeruginosa with minimal inhibitory concentrations from 3.10 to 25.0 lM.
Peptides, 2010
Peptidomic analysis of norepinephrine-stimulated skin secretions of the South-East Asian frog Hylarana erythraea (formerly Rana erythraea partim) has led to the identification of multiple peptides with antimicrobial activity. Structural characterization of the peptides demonstrated that they belong to the brevinin-1 (3), brevinin-2 (2), esculentin-2 (4), and temporin (1) families. The values in parentheses indicate the number of paralogs. In addition, a peptide (GVIKSVLKGVAKTVALG ML.NH(2)) was isolated that shows some structural similarity to the brevinin-2-related peptides (B2RP) previously isolated from North American frogs of the genus Lithobates. A synthetic replicate of the species B2RP showed broad-spectrum growth inhibitory activity against reference strains of Escherichia coli (MIC=12.5 microM), Staphylococcus aureus (MIC=12.5 microM) and Candida albicans (MIC=50 microM) and was active against multidrug-resistant clinical isolates of Acetinobacter baumannii (MIC in the range...
European Journal of Biochemistry, 2000
A 32-residue peptide, named dermatoxin, has been extracted from the skin of a single specimen of the tree frog Phyllomedusa bicolor, and purified to homogeneity using a four-step protocol. Mass spectral analysis and sequencing of the purified peptide, as well as chemical synthesis and cDNA analysis were consistent with the structure: SLGSFLKGVGTTLASVGKVVSDQF GKLLQAGQ. This peptide proved to be bactericidal towards mollicutes (wall-less eubacteria) and Gram-positive eubacteria, and also, though to a lesser extent, towards Gram-negative eubacteria. Measurement of the bacterial membrane potential revealed that the plasma membrane is the primary target of dermatoxin. Observation of bacterial cells using reflected light fluorescence microscopy after DNA-staining was consistent with a mechanism of cell killing based upon the alteration of membrane permeability rather than membrane solubilization, very likely by forming ion-conducting channels through the plasma membrane. CD spectroscopy and secondary structure predictions indicated that dermatoxin assumes an amphipathic a-helical conformation in low polarity media which mimic the lipophilicity of the membrane of target microorganisms. PCR analysis coupled with cDNA cloning and sequencing revealed that dermatoxin is expressed in the skin, the intestine and the brain. Preprodermatoxin from the brain and the intestine have the same sequence as the skin preproform except for two amino-acid substitutions in the preproregion of the brain precursor. The dermatoxin precursor displayed the characteristic features of preprodermaseptins, a family of peptide precursors found in the skin of Phyllomedusa ssp. Precursors of this family have a common N-terminal preproregion followed by markedly different C-terminal domains that give rise to 19±34-residue peptide antibiotics named dermaseptins B and phylloxin, and to the d-amino-acid-containing opioid heptapeptides dermorphins and deltorphins. Because the structures and cidal mechanisms of dermatoxin, dermaseptins B and phylloxin are very different, dermatoxin extends the repertoire of structurally and functionally diverse peptides derived from the rapidly evolving C-terminal domains of precursors of the dermaseptins family.
Antimicrobial peptide from the skin secretion of the frog Leptodactylus syphax
Toxicon, 2007
Antimicrobial peptides are considered part of the innate immune system of the majority of living organisms. Most of these molecules are small, cationic and show amphiphilic nature. The skin secretions of Leptodactylus syphax were extracted by mild electrical stimulation and its semipreparative reverse-phase chromatography was resolved in more than 40 fractions. Among these fractions, an antimicrobial peptide was isolated and its amino acid sequence determined by de novo sequencing. Six other truncated forms were characterized in skin secretion. The longest one (25 amino acid residues), named syphaxin (SPX), is amidated at the C-terminal, and shares strong sequence similarity with antimicrobial peptides found in the skin secretion of leptodactylid frogs. Two of the truncated peptides (SPX(1-22) and SPX(1-16)) were tested against Escherichia coli and Staphylococcus aureus, showing low minimal inhibitory concentration (MIC) and no significant toxicity towards blood cells, including both leukocytes and erythrocytes, based on their direct incubation in whole blood at the highest MIC concentration (64 mg/mL).
Toxicon : official journal of the International Society on Toxinology, 2008
Peptidomic analysis of norepinephrine-stimulated skin secretions from Hose's rock frog Odorrana hosii (Boulenger, 1891) led to the isolation of 8 peptides with differential antibacterial activities. Structural characterization demonstrated that the peptides belonged to the esculentin-1 (1 peptide), esculentin-2 (1 peptide), brevinin-1 (2 peptides), brevinin-2 (2 peptides), and nigrocin-2 (2 peptides) families of antimicrobial peptides. Similar analysis of skin secretions from the Malaysian fire frog Hylarana picturata (Boulenger, 1920) led to the isolation and characterization of peptides belonging to the brevinin-1 (2 peptides), brevinin-2 (5 peptides), and temporin (1 peptide) families. The differences in antimicrobial activities of paralogous peptides provide insight into structure-activity relationships, emphasizing the importance of cationicity in determining potency. The substitution Lys11-->Gln in brevinin-1HSa (FLPAVLRVAAKIVPTVFCAISKKC) from O. hosii abolishes growth...
Structure, Synthesis, and Molecular Cloning of Dermaseptins B, a Family of Skin Peptide Antibiotics
Journal of Biological Chemistry, 1998
Analysis of antimicrobial activities that are present in the skin secretions of the South American frog Phyllomedusa bicolor revealed six polycationic (lysine-rich) and amphipathic alpha-helical peptides, 24-33 residues long, termed dermaseptins B1 to B6, respectively. Prepro-dermaseptins B all contain an almost identical signal peptide, which is followed by a conserved acidic propiece, a processing signal Lys-Arg, and a dermaseptin progenitor sequence. The 22-residue signal peptide plus the first 3 residues of the acidic propiece are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The 25-residue amino-terminal region of prepro-dermaseptins B shares 50% identity with the corresponding region of precursors for D-amino acid containing opioid peptides or for antimicrobial peptides originating from the skin of distantly related frog species. The remarkable similarity found between prepro-proteins that encode end products with strikingly different sequences, conformations, biological activities and modes of action suggests that the corresponding genes have evolved through dissemination of a conserved &amp;quot;secretory cassette&amp;quot; exon.
Structure of genes for dermaseptinsB, antimicrobial peptides from frog skin
FEBS Letters, 1997
We cloned the genes of two members of the dermaseptin family, broad-spectrum antimicrobial peptides isolated from the skin of the arboreal frog Phyllomedusa bicolor. The dermaseptin gene Drg2 has a 2-exon coding structure interrupted by a small 137-bp intron, wherein exon 1 encoded a 22-residue hydrophobic signal peptide and the first three amino acids of the acidic propiece; exon 2 contained the 18 additional acidic residues of the propiece plus a typical prohormone processing signal Lys-Arg and a 32-residue dermaseptin progenitor sequence. The dermaseptin genes Drg2 and Drglg2 have conserved sequences at both untranslated ends and in the first and second coding exons. In contrast, Drglg2 comprises a third coding exon for a short version of the acidic propiece and a second dermaseptin progenitor sequence. Structural conservation between the two genes suggests that Drglg2 arose recently from an ancestral Drg2-like gene through amplification of part of the second coding exon and 3'-untranslated region. Analysis of the cDNAs coding precursors for several frog skin peptides of highly different structures and activities demonstrates that the signal peptides and part of the acidic propieces are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The organization of the genes that belong to this family, with the signal peptide and the progenitor sequence on separate exons, permits strikingly different peptides to be directed into the secretory pathway. The recruitment of such a homologous 'secretory' exon by otherwise non-homologous genes may have been an early event in the evolution of amphibian.
FEBS Letters
We cloned the genes of two members of the dermaseptin family, broad-spectrum antimicrobial peptides isolated from the skin of the arboreal frog Phyllomedusa bicolor. The dermaseptin gene Drg2 has a 2-exon coding structure interrupted by a small 137-bp intron, wherein exon 1 encoded a 22-residue hydrophobic signal peptide and the first three amino acids of the acidic propiece; exon 2 contained the 18 additional acidic residues of the propiece plus a typical prohormone processing signal Lys-Arg and a 32-residue dermaseptin progenitor sequence. The dermaseptin genes Drg2 and Drglg2 have conserved sequences at both untranslated ends and in the first and second coding exons. In contrast, Drglg2 comprises a third coding exon for a short version of the acidic propiece and a second dermaseptin progenitor sequence. Structural conservation between the two genes suggests that Drglg2 arose recently from an ancestral Drg2-like gene through amplification of part of the second coding exon and 3'-untranslated region. Analysis of the cDNAs coding precursors for several frog skin peptides of highly different structures and activities demonstrates that the signal peptides and part of the acidic propieces are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The organization of the genes that belong to this family, with the signal peptide and the progenitor sequence on separate exons, permits strikingly different peptides to be directed into the secretory pathway. The recruitment of such a homologous 'secretory' exon by otherwise non-homologous genes may have been an early event in the evolution of amphibian.