Asymptotic Expansions of Generalized Quantiles and Expectiles for Extreme Risks (original) (raw)
Generalized quantiles of a random variable were defined as the minimizers of a general asymmetric loss function, which include quantiles, expectiles and M-quantiles as their special cases. Expectiles have been suggested as potentially better alternatives to both Value-at-Risk and expected shortfall risk measures. In this paper, we first establish the first-order expansions of generalized quantiles for extreme risks as the confidence level α↑ 1, and then investigate the first-order and/or second-order expansions of expectiles of an extreme risk as α↑ 1 according to the underlying distribution belonging to the max-domain of attraction of the Fréchet, Weibull, and Gumbel distributions, respectively. Examples are also presented to examine whether and how much the first-order expansions have been improved by the second-order expansions.