Effects of Ocean Acidification on Atlantic Cod Larvae (Gadus morhua) (original) (raw)
Related papers
Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population
How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO 2 ) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae's sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO 2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Rickertype stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks.
Marine Biology, 2013
The accumulation of carbon dioxide in the atmosphere will lower the pH in ocean waters, a process termed ocean acidification (OA). Despite its potentially detrimental effects on calcifying organisms, experimental studies on the possible impacts on fish remain scarce. While adults will most likely remain relatively unaffected by changes in seawater pH, early life-history stages are potentially more sensitive, due to the lack of gills with specialized ion-regulatory mechanisms. We tested the effects of OA on growth and development of embryos and larvae of eastern Baltic cod, the commercially most important fish stock in the Baltic Sea. Cod were reared from newly fertilized eggs to early non-feeding larvae in 5 different experiments looking at a range of response variables to OA, as well as the combined effect of CO 2 and temperature. No effect on hatching, survival, development, and otolith size was found at any stage in the development of Baltic cod. Field data show that in the Bornholm Basin, the main spawning site of eastern Baltic cod, in situ levels of pCO 2 are already at levels of 1,100 latm with a pH of 7.2, mainly due to high eutrophication supporting microbial activity and permanent stratification with little water exchange. Our data show that the eggs and early larval stages of Baltic cod seem to be robust to even high levels of OA (3,200 latm), indicating an adaptational response to CO 2 .
Divergent responses of Atlantic cod to ocean acidification and food limitation
Global Change Biology
In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) were found to be heavily impaired by end-of-century levels of ocean acidification. Here, we analysed larval growth among 35-36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO 2 treatments (ambient: 503 µatm, elevated: 1,179 µatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO 2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO 2 treatment compared to the ambient CO 2 treatment. However, the elevated CO 2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments will suffer from impairments later during ontogeny. Our study highlights important allocation trade-off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish.
Severe tissue damage in Atlantic cod larvae under increasing ocean acidification
Nature Climate …, 2011
Ocean acidification, caused by increasing atmospheric concentrations of CO 2 (refs 1-3), is one of the most critical anthropogenic threats to marine life. Changes in seawater carbonate chemistry have the potential to disturb calcification, acid-base regulation, blood circulation and respiration, as well as the nervous system of marine organisms, leading to long-term effects such as reduced growth rates and reproduction 4,5 . In teleost fishes, early life-history stages are particularly vulnerable as they lack specialized internal pH regulatory mechanisms 6,7 . So far, impacts of relevant CO 2 concentrations on larval fish have been found in behaviour 8,9 and otolith size 10,11 , mainly in tropical, non-commercial species. Here we show detrimental effects of ocean acidification on the development of a mass-spawning fish species of high commercial importance. We reared Atlantic cod larvae at three levels of CO 2 , (1) present day, (2) end of next century and (3) an extreme, coastal upwelling scenario, in a long-term (2 1 2 LETTERS NATURE CLIMATE CHANGE
Food web changes under ocean acidification promote herring larvae survival
Nature Ecology & Evolution
Ocean acidification-the decrease in seawater pH due to rising CO 2 concentrations-has been shown to lower survival in early life stages of fish and, as a consequence, the recruitment of populations including commercially important species. To date, ocean-acidification studies with fish larvae have focused on the direct physiological impacts of elevated CO 2 , but largely ignored the potential effects of ocean acidification on food web interactions. In an in situ mesocosm study on Atlantic herring (Clupea harengus) larvae as top predators in a pelagic food web, we account for indirect CO 2 effects on larval survival mediated by changes in food availability. The community was exposed to projected end-of-the-century CO 2 conditions (~760 µ atm pCO 2) over a period of 113 days. In contrast with laboratory studies that reported a decrease in fish survival, the survival of the herring larvae in situ was significantly enhanced by 19 ± 2%. Analysis of the plankton community dynamics suggested that the herring larvae benefitted from a CO 2-stimulated increase in primary production. Such indirect effects may counteract the possible direct negative effects of ocean acidification on the survival of fish early life stages. These findings emphasize the need to assess the food web effects of ocean acidification on fish larvae before we can predict even the sign of change in fish recruitment in a high-CO 2 ocean.
Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.)
Biogeosciences, 2011
Several experiments have shown a decrease of growth and calcification of organisms at decreased pH levels. There is a growing interest to focus on early life stages that are believed to be more sensitive to environmental disturbances such as hypercapnia. Here, we present experimental data, acquired in a commercial hatchery, demonstrating that the growth of planktonic mussel (Mytilus edulis) larvae is significantly affected by a decrease of pH to a level expected for the end of the century. Even though there was no significant effect of a 0.25-0.34 pH unit decrease on hatching and mortality rates during the first 2 days of development nor during the following 13-day period prior to settlement, final shells were respectively 4.5 ± 1.3 and 6.0 ± 2.3% smaller at pH NBS ∼7.8 (pCO 2 ∼ 1100-1200 µatm) than at a control pH NBS of ∼8.1 (pCO 2 ∼ 460-640 µatm). Moreover, a decrease of 12.0 ± 5.4% of shell thickness was observed after 15d of development. More severe impacts were found with a decrease of ∼0.5 pH NBS unit during the first 2 days of development which could be attributed to a decrease of calcification due to a slight undersaturation of seawater with respect to aragonite. Indeed, important effects on both hatching and D-veliger shell growth were found. Hatching rates were 24±4% lower while D-veliger shells were 12.7±0.9% smaller at pH NBS ∼ 7.6 (pCO 2 ∼ 1900 µatm) than at a con-Correspondence to: F. Gazeau (f.gazeau@obs-vlfr.fr) trol pH NBS of ∼ 8.1 (pCO 2 ∼540 µatm). Although these results show that blue mussel larvae are still able to develop a shell in seawater undersaturated with respect to aragonite, the observed decreases of hatching rates and shell growth could lead to a significant decrease of the settlement success. As the environmental conditions considered in this study do not necessarily reflect the natural conditions experienced by this species at the time of spawning, future studies will need to consider the whole larval cycle (from fertilization to settlement) under environmentally relevant conditions in order to investigate the potential ecological and economical losses of a decrease of this species fitness in the field.
Journal of Experimental Biology
European sea bass (Dicentrarchus labrax) is a large, economically important fish species with a long generation time whose long-term resilience to ocean acidification (OA) and warming (OW) is not clear. We incubated sea bass from Brittany (France) for two generations (>5 years in total) under ambient and predicted OA conditions (PCO2: 650 and 1700 µatm) crossed with ambient and predicted OW conditions in F1 (temperature: 15–18°C and 20–23°C) to investigate the effects of climate change on larval and juvenile growth and metabolic rate. We found that in F1, OA as a single stressor at ambient temperature did not affect larval or juvenile growth and OW increased developmental time and growth rate, but OAW decreased larval size at metamorphosis. Larval routine and juvenile standard metabolic rate were significantly lower in cold compared with warm conditioned fish and also lower in F0 compared with F1 fish. We did not find any effect of OA as a single stressor on metabolic rate. Juven...