Towards efficient flight: insights on proper morphing-wing modulation in a bat-like robot (original) (raw)
Related papers
2021
Our goal in this work is to expand the theory and practice of robot locomotion by addressing critical challenges associated with the robotic biomimicry of bat aerial locomotion. Bats wings exhibit fast wing articulation and can mobilize as many as 40 joints within a single wingbeat. Mimicking bat flight can be a significant ordeal and the current design paradigms have failed as they assume only closed-loop feedback roles through sensors and conventional actuators while ignoring the computational role carried by morphology. In this paper, we propose a design framework called Morphing via Integrated Mechanical Intelligence and Control (MIMIC) which integrates a small and low energy actuators to control the robot through a change in morphology. In this paper, using the dynamic model of Northeastern University’s Aerobat, which is designed to test the effectiveness of the MIMIC framework, it will be shown that computational structures and closed-loop feedback can be successfully used to ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.