Bioinformatic study of the soil microbiome under different cropping systems (original) (raw)
Abstract
The presentation of this doctoral thesis is made under "publication compendium mode", in accordance with Article 20 of the Regulation of Official Doctorates Studies of the Polytechnic University of Cartagena of March 24, 2022. The papers have been published in open access with the express authorization of director and co-directors of the present thesis. The papers were prepared and published after the beginning of the doctoral studies and its references are listed below:
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (412)
- Supplementary Materials: The following are available online at https://www.mdpi.com/article/ 10.3390/agriculture11050445/s1, Figure S1: Rarefaction curves for the bacterial and fungal soil sequences, Table S1: Characteristics of organic amedments, Table S2: Diversity index for the bacterial and fungal community, Table S3: Relative abundance of most abundant bacterial phyla, Table S4: Relative abundance of most abundant fungal phyla, Table S5: NMDS results between bacterial community and the significant properties, Table S6: NMDS results between fungal community and the significant properties.
- ITPS FAO. Food Agric. In Status of the World's Soil Resources (SWSR) Main Report; Organ. United Nations Intergov. Tech. Panel Soils: Rome, Italy, 2015.
- Le Campion, A.; Oury, F.-X.; Heumez, E.; Rolland, B. Conventional versus organic farming systems: Dissecting comparisons to improve cereal organic breeding strategies. Org. Agric. 2020, 10, 63-74. [CrossRef]
- Bonou-zin, R.D.C.; Allali, K.; Fadlaoui, A. Environmental Efficiency of Organic and Conventional Cotton in Benin. Sustainability 2019, 11, 3044. [CrossRef]
- Tully, K.L.; McAskill, C. Promoting soil health in organically managed systems: A review. Org. Agric. 2020, 10, 339-358. [CrossRef]
- Eurostat. Organic Farming Statistics. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Organic\_ farming_statistics (accessed on 15 January 2019).
- De Ponti, T.; Rijk, B.; Van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1- 9. [CrossRef]
- Bonanomi, G.; De Filippis, F.; Cesarano, G.; La Storia, A.; Ercolini, D.; Scala, F. Organic farming induces changes in soil microbiota that affect agro-ecosystem functions. Soil Biol. Biochem. 2016, 103, 327-336. [CrossRef]
- Luo, G.; Li, L.; Friman, V.-P.; Guo, J.; Guo, S.; Shen, Q.; Ling, N. Organic amendments increase crop yields by improving microbe- mediated soil functioning of agroecosystems: A meta-analysis. Soil Biol. Biochem. 2018, 124, 105-115. [CrossRef]
- Dangi, S.R.; Bañuelos, G.; Buyer, J.S.; Hanson, B.; Gerik, J. Microbial community biomass and structure in saline and non-saline soils associated with salt-and boron-tolerant poplar clones grown for the phytoremediation of selenium. Int. J. Phytoremediat. 2018, 20, 129-137. [CrossRef]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2017, 68, 12-26. [CrossRef]
- Schrama, M.; De Haan, J.J.; Kroonen, M.; Verstegen, H.; Van der Putten, W.H. Crop yield gap and stability in organic and conventional farming systems. Agric. Ecosyst. Environ. 2018, 256, 123-130. [CrossRef]
- Wagner, S.; Cattle, S.R.; Scholten, T. Soil-aggregate formation as influenced by clay content and organic-matter amendment. J. Plant Nutr. Soil Sci. 2007, 170, 173-180. [CrossRef]
- Chaudhry, V.; Rehman, A.; Mishra, A.; Chauhan, P.S.; Nautiyal, C.S. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 2012, 64, 450-460. [CrossRef] [PubMed]
- Reilly, K.; Cullen, E.; Lola-Luz, T.; Stone, D.; Valverde, J.; Gaffney, M.; Brunton, N.; Grant, J.; Griffiths, B.S. Effect of organic, conventional and mixed cultivation practices on soil microbial community structure and nematode abundance in a cultivated onion crop. J. Sci. Food Agric. 2013, 93, 3700-3709. [CrossRef]
- Gonthier, D.J.; Ennis, K.K.; Farinas, S.; Hsieh, H.-Y.; Iverson, A.L.; Batáry, P.; Rudolphi, J.; Tscharntke, T.; Cardinale, B.J.; Perfecto, I. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141358. [CrossRef] [PubMed]
- Bell, L.W.; Sparling, B.; Tenuta, M.; Entz, M.H. Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-established grassland. Agric. Ecosyst. Environ. 2012, 158, 156-163. [CrossRef]
- Krishnaraj, P.U.; Sabale, S.N. Effect of organic and inorganic fertilization on soil bacterial diversity associated with sole crop (Pigeon pea) and crop rotation (Green gram-Sorghum). J. Pharmacogn. Phytochem. 2019, 8, 577-581.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; In World Soil Resources Reports; FAO: Rome, Italy, 2015.
- ISO HRN. Soil Quality-Determination of Dry Bulk Density; Croat Stand Institute: Zagreb, Croat, 2017.
- De Angelis, M. The Beginning of History: Value Struggles and Global Capital; Pluto Press: London, UK, 2007; ISBN 0745320368.
- ISO. Soil Quality: Determination of the Potential Cation Exchange Capacity and Exchangeable Cations Using Barium Chloride Solution Buffered at PH; ISO 13536:1995. Available online: https://www.iso.org/standard/22180.html (accessed on 5 January 2021).
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892-898. [CrossRef]
- UGT. UGT Products. Soil Science; UGT: Müncheberg, Germany, 2018. Available online: http://www.ugt-online.de/en/products/ soil-science/ (accessed on 10 March 2017).
- Cambardella, C.A.; Elliott, E.T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992, 56, 777-783. [CrossRef]
- Chen, H.; Hou, R.; Gong, Y.; Li, H.; Fan, M.; Kuzyakov, Y. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Tillage Res. 2009, 106, 85-94. [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen-Inorganic forms. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1983, 9, 643-698.
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68-72. [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, DC, USA, 1954.
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000; ISBN 1420039903.
- Reichman, S.M. The Responses of Plants to Metal Toxicity: A Review Forusing on Copper, Manganese & Zinc; Australian Minerals & Energy Environment Foundation Melbourne: Melbourne, Australia, 2002; ISBN 187620513X.
- Porta Casanellas, J.; López Acevedo Requerin, M.; Rodríguez Ochoa, R. Técnicas y Experimentos en Edafología; Romanyá/Valls: Capellades, Spain, 1986; ISBN 846004341X.
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extrac- tion/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412-431. [CrossRef] [PubMed]
- Taskin, B.; Gozen, A.G.; Duran, M. Selective quantification of viable Escherichia coli bacteria in biosolids by quantitative PCR with propidium monoazide modification. Appl. Environ. Microbiol. 2011, 77, 4329-4335. [CrossRef] [PubMed]
- Smith, D.P.; Peay, K.G. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 2014, 9, e90234. [CrossRef] [PubMed]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621-1624.
- Bragg, L.; Stone, G.; Imelfort, M.; Hugenholtz, P.; Tyson, G.W. Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat. Methods 2012, 9, 425. [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335. [CrossRef] [PubMed]
- Comeau, A.M.; Douglas, G.M.; Langille, M.G.I. Microbiome helper: A custom and streamlined workflow for microbiome research. MSystems 2017, 2. [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [CrossRef]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014, 42, D633-D642. [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114-2120.
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014, 30, 614-620. [CrossRef] [PubMed]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013, 22, 5271-5277. [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing (Version 3.5.3);
- R Core Team: Boston, MA, USA, 2019.
- Ogle, D.H. FSA: Fisheries Stock Analysis. R Packag. Version 0.8.30. Available online: https://github.com/droglenc/FSA (accessed on 5 January 2019).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 35095. [CrossRef]
- Kassambara, A.; Mundt, F. Factoextra: Extract and visualize the results of multivariate data analyses. R Package Version 2020, 1, 337-354.
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451-1456. [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; O'hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 1.17-4. Available online: http//CRAN.R-project.org/package=vegan2010 (accessed on 14 June 2019).
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [CrossRef]
- Afgan, E.; Baker, D.; Batut, B.; Van Den Beek, M.; Bouvier, D.; C ˇ ech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537-W544. [CrossRef]
- Jannoura, R.; Joergensen, R.G.; Bruns, C. Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. Eur. J. Agron. 2014, 52, 259-270. [CrossRef]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168-175. [CrossRef]
- Irshad, M.; Eneji, A.E.; Hussain, Z.; Ashraf, M. Chemical characterization of fresh and composted livestock manures. J. Soil Sci. Plant Nutr. 2013, 13, 115-121. [CrossRef]
- Adeleke, R.; Nwangburuka, C.; Oboirien, B. Origins, roles and fate of organic acids in soils: A review. S. Afr. J. Bot. 2017, 108, 393-406. [CrossRef]
- Ge, G.; Li, Z.; Fan, F.; Chu, G.; Hou, Z.; Liang, Y. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant Soil 2010, 326, 31. [CrossRef]
- Li, J.; Cooper, J.M.; Li, Y.; Yang, X.; Zhao, B. Soil microbial community structure and function are significantly affected by long- term organic and mineral fertilization regimes in the North China Plain. Appl. Soil Ecol. 2015, 96, 75-87. [CrossRef]
- Gu, S.; Gruau, G.; Dupas, R.; Rumpel, C.; Creme, A.; Fovet, O.; Gascuel-Odoux, C.; Jeanneau, L.; Humbert, G.; Petitjean, P. Release of dissolved phosphorus from riparian wetlands: Evidence for complex interactions among hydroclimate variability, topography and soil properties. Sci. Total Environ. 2017, 598, 421-431. [CrossRef]
- Yang, H.; Meng, Y.; Feng, J.; Li, Y.; Zhai, S.; Liu, J. Direct and indirect effects of long-term ditch-buried straw return on soil bacterial community in a rice-wheat rotation system. Land Degrad. Dev. 2020, 31, 851-867. [CrossRef]
- Zhang, Y.; Li, Q.; Chen, Y.; Dai, Q.; Hu, J. Dynamic change in enzyme activity and bacterial community with long-term rice cultivation in mudflats. Curr. Microbiol. 2019, 76, 361-369. [CrossRef]
- Liu, X.; Rashti, M.R.; Dougall, A.; Esfandbod, M.; Van Zwieten, L.; Chen, C. Subsoil application of compost improved sugarcane yield through enhanced supply and cycling of soil labile organic carbon and nitrogen in an acidic soil at tropical Australia. Soil Tillage Res. 2018, 180, 73-81. [CrossRef]
- Vera, A.; Moreno, J.L.; García, C.; Morais, D.; Bastida, F. Boron in soil: The impacts on the biomass, composition and activity of the soil microbial community. Sci. Total Environ. 2019, 685, 564-573. [CrossRef]
- Vera, A.; Moreno, J.L.; Siles, J.A.; López-Mondejar, R.; Zhou, Y.; Li, Y.; García, C.; Nicolás, E.; Bastida, F. Interactive impacts of boron and organic amendments in plant-soil microbial relationships. J. Hazard. Mater. 2021, 408, 124939. [CrossRef]
- Buckley, D.H.; Schmidt, T.M. The structure of microbial communities in soil and the lasting impact of cultivation. Microb. Ecol. 2001, 42, 11-21. [CrossRef]
- Bengtsson, J.; Ahnström, J.; Weibull, A. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 42, 261-269. [CrossRef]
- Jackson, C.R.; Vallaire, S.C. Microbial activity and decomposition of fine particulate organic matter in a Louisiana cypress swamp. J. N. Am. Benthol. Soc. 2007, 26, 743-753. [CrossRef]
- Kremen, C.; Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecol. Soc. 2012, 17, 40. [CrossRef]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms-A review. Soil Biol. Biochem. 2014, 75, 54- 63. [CrossRef]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.H. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967-10972. [CrossRef]
- Allison, V.J.; Miller, R.M.; Jastrow, J.D.; Matamala, R.; Zak, D.R. Changes in soil microbial community structure in a tallgrass prairie chronosequence. Soil Sci. Soc. Am. J. 2005, 69, 1412-1421. [CrossRef]
- Lupatini, M.; Korthals, G.W.; de Hollander, M.; Janssens, T.K.S.; Kuramae, E.E. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol. 2017, 7, 2064. [CrossRef]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015, 9, 1177-1194. [CrossRef]
- Moreno-Espíndola, I.P.; Ferrara-Guerrero, M.J.; Luna-Guido, M.L.; Ramírez-Villanueva, D.A.; León-Lorenzana, D.; Arit, S.; Gómez-Acata, S.; González-Terreros, E.; Ramírez-Barajas, B.; Navarro-Noya, Y.E. The Bacterial Community Structure and Microbial Activity in a Traditional Organic Milpa Farming System Under Different Soil Moisture Conditions. Front. Microbiol. 2018, 9, 2737. [CrossRef]
- Bastida, F.; Hernández, T.; Albaladejo, J.; García, C. Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biol. Biochem. 2013, 65, 12-21. [CrossRef]
- Štursová, M.; Žifcˇáková, L.; Leigh, M.B.; Burgess, R.; Baldrian, P. Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol. 2012, 80, 735-746. [CrossRef]
- Tang, H.; Li, C.; Xiao, X.; Shi, L.; Cheng, K.; Wen, L.; Li, W. Effects of short-term manure nitrogen input on soil microbial community structure and diversity in a double-cropping paddy field of southern China. Sci. Rep. 2020, 10, 1-9. [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: London, UK, 2010; ISBN 0080559344.
- Zhu, H.; Liu, X.; Feng, Z.; Yao, Q. Promoting Crop Growth With Symbiotic Microbes in Agro-Ecosystems in Climate Change Era. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 31-41.
- Santísima-Trinidad, A.B.L.; del Mar Montiel-Rozas, M.; Diéz-Rojo, M.Á.; Pascual, J.A.; Ros, M. Impact of foliar fungicides on target and non-target soil microbial communities in cucumber crops. Ecotoxicol. Environ. Saf. 2018, 166, 78-85. [CrossRef]
- Carini, P.; Marsden, P.J.; Leff, J.W.; Morgan, E.E.; Strickland, M.S.; Fierer, N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2016, 2, 242. [CrossRef]
- Lian, T.; Ma, Q.; Shi, Q.; Cai, Z.; Zhang, Y.; Cheng, Y.; Nian, H. High aluminum stress drives different rhizosphere soil enzyme activities and bacterial community structure between aluminum-tolerant and aluminum-sensitive soybean genotypes. Plant Soil 2019, 440, 409-425. [CrossRef]
- Stagnari, F.; Perpetuini, G.; Tofalo, R.; Campanelli, G.; Leteo, F.; Della Vella, U.; Schirone, M.; Suzzi, G.; Pisante, M. Long-term impact of farm management and crops on soil microorganisms assessed by combined DGGE and PLFA analyses. Front. Microbiol. 2014, 5, 644.
- Walterson, A.M.; Stavrinides, J. Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 2015, 39, 968-984. [CrossRef]
- Offret, C.; Desriac, F.; Le Chevalier, P.; Mounier, J.; Jégou, C.; Fleury, Y. Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: Chemodiversity and ecological significance. Mar. Drugs 2016, 14, 129. [CrossRef]
- Chronˇáková, A.; Schloter-Hai, B.; Radl, V.; Endesfelder, D.; Quince, C.; Elhottová, D.; Šimek, M.; Schloter, M. Response of archaeal and bacterial soil communities to changes associated with outdoor cattle overwintering. PLoS ONE 2015, 10, e0135627. [CrossRef]
- Galitskaya, P.; Biktasheva, L.; Saveliev, A.; Grigoryeva, T.; Boulygina, E.; Selivanovskaya, S. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing. PLoS ONE 2017, 12, e0186051.
- Rosenberg, E.; DeLong, E.F.; Lory, S.; Stackebrandt, E.; Thompson, F. The Prokaryotes: Actinobacteria; Springer: New York, NY, USA, 2014; ISBN 364230138X.
- Kundim, B.A.; Itou, Y.; Sakagami, Y.; Fudou, R.; Iizuka, T.; Yamanaka, S.; Ojika, M. New haliangicin isomers, potent antifungal metabolites produced by a marine myxobacterium. J. Antibiot. 2003, 56, 630-638. [CrossRef] [PubMed]
- Guo, Y.; Zhao, S.; Liu, Q.; Wang, H.; Wang, Y. Premliminary investigation of RNase activity and antifungal activity of { sl Wallemia sebi}. Wei Sheng Wu Xue Tong Bao 2006, 33, 30-33.
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441-446. [CrossRef]
- Gold, M.V.; Thompson, R.S.; Alternative Farming Systems Information Center. Organic Farming and Marketing: Publications from the United States Department of Agriculture, 1977-2005; Org. FARMING METHODS, Econ. Struct.; Hauppauge: New York, NY, USA, 2009; pp. 245-264.
- Sharma, D.; Yadav, K.D.; Kumar, S. Role of sawdust and cow dung on compost maturity during rotary drum composting of flower waste. Bioresour. Technol. 2018, 264, 285-289. [CrossRef] [PubMed]
- Wick, A.; Berti, M.; Lawley, Y.; Liebig, M. Integration of annual and perennial cover crops for improving soil health. In Soil Health and Intensification of Agroecosytems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 127-150.
- Abdelrahman, H.M.; Zaghloul, R.A.; Abou-Aly, H.A.; Ragab, A.A.; K Elmaghraby, M.M. Application of Some Organic Farming Methods to Enhancement The Growth and Production of Green Onion. J. Agric. Chem. Biotechnol. 2021, 12, 79-89.
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229-232. [CrossRef] [PubMed]
- Ros, M.; Klammer, S.; Knapp, B.; Aichberger, K.; Insam, H. Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manag. 2006, 22, 209-218. [CrossRef]
- Van-Camp, L.; Bujarrabal, B.; Gentile, A.R.; Jones, R.J.A.; Montanarella, L.; Olazabal, C.; Selvaradjou, S. Technical working groups established under the thematic strategy for soil protection. JRC Publ. Repos. 2004, V, JRC28868.
- Kurzemann, F.R.; Plieger, U.; Probst, M.; Spiegel, H.; Sandén, T.; Ros, M.; Insam, H. Long-Term Fertilization Affects Soil Microbiota, Improves Yield and Benefits Soil. Agronomy 2020, 10, 1664. [CrossRef]
- Ling, N.; Zhu, C.; Xue, C.; Chen, H.; Duan, Y.; Peng, C.; Guo, S.; Shen, Q. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol. Biochem. 2016, 99, 137-149. [CrossRef]
- Wright, S. The importance of soil microorganisms in aggregate stability. In Proceedings of the North Central Extension Industry Soil Fertility Conference Proceedings, Monticello, IL, USA, 19 November 2003.
- Zhou, J.; Deng, Y.; Luo, F.; He, Z.; Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio 2011, 2, e00122-11. [CrossRef]
- Zhou, J.; Deng, Y.; Luo, F.; He, Z.; Tu, Q.; Zhi, X. Functional molecular ecological networks. MBio 2010, 1, e00169-10. [CrossRef]
- Kirchmann, H.; Bergström, L.; Kätterer, T.; Mattsson, L.; Gesslein, S. Comparison of Long-Term Organic and Conventional Crop-Livestock Systems on a Previously Nutrient-Depleted Soil in Sweden. Agron. J. 2007, 99, 960-972. [CrossRef]
- Ren, C.; Zhao, F.; Shi, Z.; Chen, J.; Han, X.; Yang, G.; Feng, Y.; Ren, G. Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation. Soil Biol. Biochem. 2017, 115, 1-10. [CrossRef]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263. [CrossRef] [PubMed]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Thurber, R.L.V.; Knight, R. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814-821. [CrossRef] [PubMed]
- Sun, Y.; Luo, C.; Jiang, L.; Song, M.; Zhang, D.; Li, J.; Li, Y.; Ostle, N.J.; Zhang, G. Land-use changes alter soil bacterial composition and diversity in tropical forest soil in China. Sci. Total Environ. 2020, 712, 136526. [CrossRef] [PubMed]
- Fei, Y.; Huang, S.; Zhang, H.; Tong, Y.; Wen, D.; Xia, X.; Wang, H.; Luo, Y.; Barceló, D. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Sci. Total Environ. 2020, 707, 135634. [CrossRef]
- Dube, J.P.; Valverde, A.; Steyn, J.M.; Cowan, D.A.; Van der Waals, J.E. Differences in bacterial diversity, composition and function due to long-term agriculture in soils in the eastern free State of South Africa. Diversity 2019, 11, 61. [CrossRef]
- Chen, H.; Xia, Q.; Yang, T.; Shi, W. Eighteen-year farming management moderately shapes the soil microbial community structure but promotes habitat-specific taxa. Front. Microbiol. 2018, 9, 1776. [CrossRef]
- García Algarra, F.J. Modelos de Redes Cooperativas; ETS de Ingeniería Agronómica, Alimentaria y de Biosistemas (UPM): Madrid, Spain, 2016.
- Montoya, J.M.; Pimm, S.L.; Solé, R. V Ecological networks and their fragility. Nature 2006, 442, 259-264. [CrossRef]
- Barberán, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012, 6, 343-351. [CrossRef]
- Fierer, N.; Leff, J.W.; Adams, B.J.; Nielsen, U.N.; Bates, S.T.; Lauber, C.L.; Owens, S.; Gilbert, J.A.; Wall, D.H.; Caporaso, J.G. Cross- biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. USA 2012, 109, 21390-21395. [CrossRef] [PubMed]
- Qiu, X.; Zhou, G.; Zhang, J.; Wang, W. Microbial community responses to biochar addition when a green waste and manure mix are composted: A molecular ecological network analysis. Bioresour. Technol. 2019, 273, 666-671. [CrossRef] [PubMed]
- Zheng, W.; Xue, D.; Li, X.; Deng, Y.; Rui, J.; Feng, K.; Wang, Z. The responses and adaptations of microbial communities to salinity in farmland soils: A molecular ecological network analysis. Appl. Soil Ecol. 2017, 120, 239-246. [CrossRef]
- Anjos, L.; Gaistardo, C.; Deckers, J.; Dondeyne, S.; Eberhardt, E.; Gerasimova, M.; Harms, B.; Jones, A.; Krasilnikov, P.; Reinsch, T.; et al. World Reference Base for Soil Resources 2014 (Update 2015), International Soil Classification System for Naming Soils and Cre ating Legends for Soil Maps; World Soil Resour. Reports; FAO: Rome, Italy, 2015.
- Cuartero, J.; Özbolat, O.; Sánchez-Navarro, V.; Egea-Cortines, M.; Zornoza, R.; Canfora, L.; Orrù, L.; Pascual, J.A.; Vivo, J.-M.; Ros, M. Changes on Bacterial and Fungal Soil Communities in Long-Term Organic Cropping Systems. Agriculture 2021, 11, 445.
- Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012, 40, D109-D114. [CrossRef] [PubMed]
- Deng, Y.; Jiang, Y.-H.; Yang, Y.; He, Z.; Luo, F.; Zhou, J. Molecular ecological network analyses. BMC Bioinform. 2012, 13, 1-20. [CrossRef] [PubMed]
- Guimera, R.; Amaral, L.A.N. Functional cartography of complex metabolic networks. Nature 2005, 433, 895-900. [CrossRef]
- Olesen, J.M.; Bascompte, J.; Dupont, Y.L.; Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 2007, 104, 19891-19896. [CrossRef]
- Saito, R.; Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.-L.; Lotia, S.; Pico, A.R.; Bader, G.D.; Ideker, T. A travel guide to Cytoscape plugins. Nat. Methods 2012, 9, 1069-1076. [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin, Germany, 2016.
- Oksanen, J.; Blanchet, G.; Friendly, M.; Kindt, R.; Pierre, L.; McGlinn, D.; Minchin, P.R.; O'Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5-7. Available online: https://cran.r-project.org/package=vegan (accessed on 10 December 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; v 4.0.
- Ogle, D.; Ogle, M.D. FSA: Fisheries Stock Analysis; R Package Version 0.8.30. Available online: https://github.com/droglenc/FSA (accessed on 15 December 2020).
- Morrissey, E.M.; Mau, R.L.; Schwartz, E.; Caporaso, J.G.; Dijkstra, P.; Van Gestel, N.; Koch, B.J.; Liu, C.M.; Hayer, M.; McHugh, T.A. Phylogenetic organization of bacterial activity. ISME J. 2016, 10, 2336-2340. [CrossRef]
- Chow, C.-E.T.; Kim, D.Y.; Sachdeva, R.; Caron, D.A.; Fuhrman, J.A. Top-down controls on bacterial community structure: Microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 2014, 8, 816-829. [CrossRef] [PubMed]
- Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577-8582. [CrossRef] [PubMed]
- Bai, S.; Lyu, T.; Ding, Y.; Li, Z.; Wang, D.; You, S.; Xie, Q. Campus sewage treatment in multilayer horizontal subsurface flow constructed wetlands: Nitrogen removal and microbial community distribution. CLEAN-Soil Air Water 2017, 45, 1700254.
- Wood, S.A.; Gilbert, J.A.; Leff, J.W.; Fierer, N.; D'Angelo, H.; Bateman, C.; Gedallovich, S.M.; Gillikin, C.M.; Gradoville, M.R.; Mansor, P. Consequences of tropical forest conversion to oil palm on soil bacterial community and network structure. Soil Biol. Biochem. 2017, 112, 258-268. [CrossRef]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538-550. [CrossRef] [PubMed]
- Jiang, Y.; Sun, B.; Li, H.; Liu, M.; Chen, L.; Zhou, S. Aggregate-related changes in network patterns of nematodes and ammonia oxidizers in an acidic soil. Soil Biol. Biochem. 2015, 88, 101-109. [CrossRef]
- Shi, L.; Huang, Y.; Zhang, M.; Yu, Y.; Lu, Y.; Kong, F. Bacterial community dynamics and functional variation during the long-term decomposition of cyanobacterial blooms in-vitro. Sci. Total Environ. 2017, 598, 77-86. [CrossRef]
- Yang, H.; Ma, J.; Rong, Z.; Zeng, D.; Wang, Y.; Hu, S.; Ye, W.; Zheng, X. Wheat straw return influences nitrogen-cycling and pathogen associated soil microbiota in a wheat-soybean rotation system. Front. Microbiol. 2019, 10, 1811. [CrossRef]
- Feng, K.; Zhang, Z.; Cai, W.; Liu, W.; Xu, M.; Yin, H.; Wang, A.; He, Z.; Deng, Y. Biodiversity and species competition regulate the resilience of microbial biofilm community. Mol. Ecol. 2017, 26, 6170-6182. [CrossRef]
- Ye, Z.; Li, J.; Wang, J.; Zhang, C.; Liu, G. Diversity and co-occurrence network modularization of bacterial communities determine soil fertility and crop yields in arid fertigation agroecosystems. Biol. Fertil. Soils 2021, 57, 809-824. [CrossRef]
- Lo, C.-C. Effect of pesticides on soil microbial community. J. Environ. Sci. Heal. Part B 2010, 45, 348-359. [CrossRef]
- Meron, D.; Atias, E.; Kruh, L.I.; Elifantz, H.; Minz, D.; Fine, M.; Banin, E. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J. 2011, 5, 51-60. [CrossRef] [PubMed]
- Röttjers, L.; Faust, K. From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiol. Rev. 2018, 42, 761-780. [CrossRef]
- Mundra, S.; Kjønaas, O.J.; Morgado, L.N.; Krabberød, A.K.; Ransedokken, Y.; Kauserud, H. Soil depth matters: Shift in composition and inter-kingdom co-occurrence patterns of microorganisms in forest soils. FEMS Microbiol. Ecol. 2021, 97, fiab022. [CrossRef] [PubMed]
- Coyte, K.Z.; Schluter, J.; Foster, K.R. The ecology of the microbiome: Networks, competition, and stability. Science 2015, 350, 663-666. [CrossRef] [PubMed]
- Lu, L.; Yin, S.; Liu, X.; Zhang, W.; Gu, T.; Shen, Q.; Qiu, H. Fungal networks in yield-invigorating and-debilitating soils induced by prolonged potato monoculture. Soil Biol. Biochem. 2013, 65, 186-194. [CrossRef]
- Siles, J.A.; García-Sánchez, M.; Gómez-Brandón, M. Studying Microbial Communities through Co-Occurrence Network Analyses during Processes of Waste Treatment and in Organically Amended Soils: A Review. Microorganisms 2021, 9, 1165. [CrossRef]
- Zhou, Z.; Gao, T.; Zhu, Q.; Yan, T.; Li, D.; Xue, J.; Wu, Y. Increases in bacterial community network complexity induced by biochar- based fertilizer amendments to karst calcareous soil. Geoderma 2019, 337, 691-700. [CrossRef]
- Mehrani, M.-J.; Sobotka, D.; Kowal, P.; Ciesielski, S.; Makinia, J. The occurrence and role of Nitrospira in nitrogen removal systems. Bioresour. Technol. 2020, 303, 122936. [CrossRef]
- Pinto, A.J.; Marcus, D.N.; Ijaz, U.Z.; Bautista-de Lose Santos, Q.M.; Dick, G.J.; Raskin, L. Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system. Msphere 2016, 1, e00054-15. [CrossRef]
- Dahal, B.; NandaKafle, G.; Perkins, L.; Brözel, V.S. Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota. Microbiol. Res. 2017, 195, 31-39. [CrossRef] [PubMed]
- Ide, H.; Ishii, K.; Fujitani, H.; Tsuneda, S. Draft genome sequence of Acidovorax sp. strain NB1, isolated from a nitrite-oxidizing enrichment culture. Microbiol. Resour. Announc. 2019, 8, e00547-19. [CrossRef] [PubMed]
- Hicks, L.C.; Lajtha, K.; Rousk, J. Nutrient limitation may induce microbial mining for resources from persistent soil organic matter. Ecology 2021, 102, e03328. [CrossRef] [PubMed]
- Lin, Y.; Ye, G.; Kuzyakov, Y.; Liu, D.; Fan, J.; Ding, W. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 2019, 134, 187-196. [CrossRef]
- Quilty, J.R.; Cattle, S.R. Use and understanding of organic amendments in Australian agriculture: A review. Soil Res. 2011, 49, 1-26. [CrossRef]
- Zhao, J.; Ni, T.; Xun, W.; Huang, X.; Huang, Q.; Ran, W.; Shen, B.; Zhang, R.; Shen, Q. Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system. Appl. Microbiol. Biotechnol. 2017, 101, 4761-4773. [CrossRef]
- Pandit, S.N.; Kolasa, J.; Cottenie, K. Contrasts between habitat generalists and specialists: An empirical extension to the basic metacommunity framework. Ecology 2009, 90, 2253-2262. [CrossRef]
- Janssen, P.H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 2006, 72, 1719-1728. [CrossRef]
- Tahir, H.A.S.; Gu, Q.; Wu, H.; Niu, Y.; Huo, R.; Gao, X. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci. Rep. 2017, 7, 1-15. [CrossRef]
- Tan, H.; Zhou, S.; Deng, Z.; He, M.; Cao, L. Ribosomal-sequence-directed selection for endophytic streptomycete strains antagonistic to Ralstonia solanacearum to control tomato bacterial wilt. Biol. Control 2011, 59, 245-254. [CrossRef]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115-125. [CrossRef] [PubMed]
- Suominen, S.; van Vliet, D.M.; Sánchez-Andrea, I.; van der Meer, M.T.J.; Sinninghe Damste, J.S.; Villanueva, L. Organic matter type defines the composition of active microbial communities originating from anoxic Baltic Sea sediments. Front. Microbiol. 2021, 12, 978. [CrossRef] [PubMed]
- Sagova-Mareckova, M.; Zadorova, T.; Penizek, V.; Omelka, M.; Tejnecky, V.; Pruchova, P.; Chuman, T.; Drabek, O.; Buresova, A.; Vanek, A. The structure of bacterial communities along two vertical profiles of a deep colluvial soil. Soil Biol. Biochem. 2016, 101, 65- 73. [CrossRef]
- Mo, Y.; Zhang, W.; Wilkinson, D.M.; Yu, Z.; Xiao, P.; Yang, J. Biogeography and co-occurrence patterns of bacterial generalists and specialists in three subtropical marine bays. Limnol. Oceanogr. 2021, 66, 793-806. [CrossRef]
- Lin, Z.; Zhen, Z.; Wu, Z.; Yang, J.; Zhong, L.; Hu, H.; Luo, C.; Bai, J.; Li, Y.; Zhang, D. The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils. J. Hazard. Mater. 2016, 301, 35-45. [CrossRef]
- Ventura, M.; Canchaya, C.; Fitzgerald, G.F.; Gupta, R.S.; van Sinderen, D. Genomics as a means to understand bacterial phylogeny and ecological adaptation: The case of bifidobacteria. Antonie Van Leeuwenhoek 2007, 91, 351-372. [CrossRef]
- Kersters, K.; De Vos, P.; Gillis, M.; Swings, J.; Vandamme, P.; Stackebrandt, E. Introduction to the Proteobacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria; Springer: Berlin, Germany, 2006; Volume 5, pp. 3-37, ISBN 0387307451.
- Wiedenbeck, J.; Cohan, F.M. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev. 2011, 35, 957-976. [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27-30. [CrossRef]
- Ryals, R.; Silver, W.L. Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands. Ecol. Appl. 2013, 23, 46-59. [CrossRef]
- Fierer, N.; Ladau, J.; Clemente, J.C.; Leff, J.W.; Owens, S.M.; Pollard, K.S.; Knight, R.; Gilbert, J.A.; McCulley, R.L. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 2013, 342, 621-624.
- Bossolani, J.W.; Crusciol, C.A.C.; Merloti, L.F.; Moretti, L.G.; Costa, N.R.; Tsai, S.M.; Kuramae, E.E. Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system. Geoderma 2020, 375, 114476. [CrossRef]
- Zhaoxiang, W.; Huihu, L.; Qiaoli, L.; Changyan, Y.; Faxin, Y. Application of bio-organic fertilizer, not biochar, in degraded red soil improves soil nutrients and plant growth. Rhizosphere 2020, 16, 100264. [CrossRef]
- Fan, F.; Yu, B.; Wang, B.; George, T.S.; Yin, H.; Xu, D.; Li, D.; Song, A. Microbial mechanisms of the contrast residue decomposition and priming effect in soils with different organic and chemical fertilization histories. Soil Biol. Biochem. 2019, 135, 213-221.
- Igiehon, N.O.; Babalola, O.O. Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture. Int. J. Environ. Res. Public Health 2018, 15, 574. [CrossRef]
- Zhu, T.; Cheng, H.; Yang, L.; Su, S.; Wang, H.; Wang, S.; Wang, A. Coupled sulfur and iron (II) carbonate-driven autotrophic denitrification for significantly enhanced nitrate removal. Environ. Sci. Technol. 2018, 53, 1545-1554. [CrossRef]
- Van Zwieten, L.; Singh, B.P.; Kimber, S.W.L.; Murphy, D.V.; Macdonald, L.M.; Rust, J.; Morris, S. An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agric. Ecosyst. Environ. 2014, 191, 53-62. [CrossRef]
- Putz, M.; Schleusner, P.; Rütting, T.; Hallin, S. Relative abundance of denitrifying and DNRA bacteria and their activity determine nitrogen retention or loss in agricultural soil. Soil Biol. Biochem. 2018, 123, 97-104. [CrossRef] References Arbizu, M., 2017, P. pairwiseAdonis: Pairwise multivariate comparison using adonis, [WWW Document]. URL https://github.com/pmartinezarbizu/pairwiseAdonis.
- Asaf, S., Numan, M., Khan, A.L., Al-Harrasi, A., 2020. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit. Rev. Biotechnol. 40, 138-152.
- Bever, J.D., Platt, T.G., Morton, E.R., 2012. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu. Rev. Microbiol. 66, 265-283.
- Bhattacharyya, P.N., Jha, D.K., 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World. J. Microbiol. Biotechnol. 28, 1327-1350.
- Blagodatskaya, E., Kuzyakov, Y., 2013. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol. Biochem. 67, 192-211.
- Bragg, L., Stone, G., Imelfort, M., Hugenholtz, P., Tyson, G.W., 2012. Fast, accurate error- correction of amplicon pyrosequences using Acacia. Nat. Methods 9, 425-6.
- Campbell, B.J., Polson, S.W., Hanson, T.E., Mack, M.C., Schuur, E.A.G., 2010. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ. Microbiol 12, 1842-1854.
- Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335-6.
- Castro, J.F., Nouioui, I., Sangal, V., Choi, S., Yang, S.-J., Kim, B.-Y., Trujillo, M.E., Riesco, R., Montero-Calasanz, M., del, C., Rahmani, T.P.D., 2018a. Blastococcus atacamensis sp. nov., a novel strain adapted to life in the Yungay core region of the Atacama Desert. Int. J. Syst. Evol. Microbiol 68, 2712-2721.
- Castro, J.F., Nouioui, I., Sangal, V., Trujillo, M.E., del Carmen Montero-Calasanz, M., Rahmani, T., Bull, A.T., Asenjo, J.A., Andrews, B.A., Goodfellow, M., 2018b. Geodermatophilus chilensis sp. nov., from soil of the Yungay core-region of the Atacama Desert, Chile. Syst. Appl. Microbiol. 41, 427-436.
- Chen, G., Kong, X., Gan, Y., Zhang, R., Feng, F., Yu, A., Zhao, C., Wan, S., Chai, Q., 2018. Enhancing the systems productivity and water use efficiency through coordinated soil water sharing and compensation in strip-intercropping. Sci. Rep. 8, 1-11.
- Chen, Y.P., Rekha, P.D., Arun, A.B., Shen, F.T., Lai, W.-A., Young, C.C., 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34, 33-41.
- Chimonyo, V.G.P., Modi, A.T., Mabhaudhi, T., 2016. Simulating yield and water use of a sorghum-cowpea intercrop using APSIM. Agric. Water Manag 177, 317-328.
- Clarke, K.R., Ainsworth, M., 1993. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Ser. 92, 205-219.
- Comeau, A.M., Douglas, G.M., Langille, M.G.I., 2017. Microbiome helper: a custom and streamlined workflow for microbiome research. MSystems 2, 2.
- FoX, J., Friendly, G.G., Graves, S., Heiberger, R., Monette, G., Nilsson, H., Ripley, B., Weisberg, S., FoX, M.J., Suggests, M., 2007. The car package. R Found. Stat. Comput.
- FU, Z., Li, Z., Ping, C., Qing, D.U., Ting, P., Chun, S., WANG, X., LIU, W., YANG, W., YONG, T., 2019. Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community. J. Integr. Agric. 18, 2006-2018.
- Gaiser, T., Barros, De, Lange, I., Williams, F.-M., J.R, 2004. Water use efficiency of a maize/cowpea intercrop on a highly acidic tropical soil as affected by liming and fertilizer application. Plant Soil 263, 165-171.
- = Gebru, H., 2015. A review on the comparative advantages of intercropping to mono- cropping system. J. Biol. Agric. Healthc. 5, 1-13.
- Gong, X., Liu, C., Li, J., Luo, Y., Yang, Q., Zhang, W., Yang, P., Feng, B., 2019. Responses of rhizosphere soil properties, enzyme activities and microbial diversity to intercropping patterns on the Loess Plateau of China. Soil Tillage Res 195, 104355.
- Griffiths, B.S., Philippot, L., 2013. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37, 112-129.
- Hinsinger, P., Betencourt, E., Bernard, L., Brauman, A., Plassard, C., Shen, J., Tang, X., Zhang, F., 2011. P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol. 156, 1078-1086.
- Jin, P., Ren, B., Wang, X.C., Jin, X., Shi, X., 2020. Mechanism of microbial metabolic responses and ecological system conversion under different nitrogen conditions in sewers. Water Res 186, 116312.
- Kandeler, E., Gerber, H., 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6, 68-72.
- Keeney, D.R., Nelson, D.W., 1983. Nitrogen-inorganic forms. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 9, 643-698.
- Latati, M., Blavet, D., Alkama, N., Laoufi, H., Drevon, J.-J., Gerard, F., Pansu, M., Ounane, S.M., 2014. The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil. Plant Soil 385, 181-191.
- Lauber, C.L., Strickland, M.S., Bradford, M.A., Fierer, N., 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40, 2407-2415.
- Legendre, P., Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271-280.
- Li, J., 2001. Nitrate leaching loss from soil and nutrient utilization by tomato in protected field. Chinese J. Appl. Environ. Biol. 7, 126-129.
- Li, L., Li, S.-M., Sun, J.-H., Zhou, L.-L., Bao, X.-G., Zhang, H.-G., Zhang, F.-S., 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl. Acad. Sci. 104, 11192-11196.
- Li, P., Ye, S., Liu, H., Pan, A., Ming, F., Tang, X., 2018. Cultivation of drought-tolerant and insect-resistant rice affects soil bacterial, but not fungal, abundances and community structures. Front. Microbiol. 9, 1390.
- Li, S., Wu, F., 2018. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Front. Microbiol. 9, 1521.
- Li, Z.-M., Shen, J.-P., Zhang, L.-M., Liu, G.-P., Bai, W.-M., He, J.-Z., 2018. Effects of stimulated nitrogen deposition on the bacterial community structure of semiarid temperate grassland. Huan jing ke xue Huanjing kexue 39, 5665-5671.
- Lidbury, I.D.E.A., Borsetto, C., Murphy, A.R.J., Bottrill, A., Jones, A.M.E., Bending, G.D., Hammond, J.P., Chen, Y., Wellington, E.M.H., Scanlan, D.J., 2021. Niche-adaptation in plant-associated Bacteroidetes favours specialisation in organic phosphorus mineralisation. ISME J. 15, 1040-1055.
- Lithourgidis, A.S., Vlachostergios, D.N., Dordas, C.A., Damalas, C.A., 2011. Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems. Eur. J. Agron. 34, 287-294.
- Maitra, S., Palai, J.B., Manasa, P., Kumar, D.P., 2019. Potential of intercropping system in sustaining crop productivity. Int. J. Agric. Environ. Biotechnol. 12, 39-45.
- Manasa, P., Maitra, S., Reddy, M.D., 2018. Effect of summer maize-legume intercropping system on growth, productivity and competitive ability of crops. Int. J. Manag. Technol. Eng. 8, 2871-2875.
- Marx, M.-C., Wood, M., Jarvis, S.C., 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633-1640.
- Mousavi, S.R., Eskandari, H., 2011. A general overview on intercropping and its advantages in sustainable agriculture. J. Appl. Environ. Biol. Sci. 1, 482-486.
- Munisse, P., Jensen, B.D., Quilambo, O.A., Andersen, S.B., Christiansen, J.L., 2012. Watermelon intercropped with cereals under semi-arid conditions: an on-farm study. EXp. Agric. 48, 388-398.
- Namatsheve, T., Cardinael, R., Corbeels, M., Chikowo, R., 2020. Productivity and biological N 2-fiXation in cereal-cowpea intercropping systems in sub-Saharan Africa. A review. Agron. Sustain. Dev. 40, 1-12.
- Negawo, W.J., Beyene, D.N., 2017. The role of coffee based agroforestry system in tree diversity conservation in Eastern Uganda. J. Landsc. Ecol. 10, 1-18.
- Nelson, W.C.D., Hoffmann, M.P., Vadez, V., Roetter, R.P., Whitbread, A.M., 2018. Price hikes could affect treatment for NTDs in the USA, Testing pearl millet and cowpea intercropping systems under high temperatures. F. Crop. Res. 217, 150-166.
- Ngwira, A.R., Aune, J.B., Mkwinda, S., 2012. On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. F. Crop. Res. 132, 149-157.
- Ogle, D., Ogle, M.D., 2017. Package 'FSA.'. CRAN Repos. 1-206.
- Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Stevens, M.H.H., Oksanen, M.J., Suggests, M., 2007. The vegan package. Community Ecol. Packag. 10, 631-637.
- Olsen, S.R., 1954, Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture.
- Oseni, T.O., 2010. Evaluation of sorghum-cowpea intercrop productivity in savanna agro-ecology using competition indices. J. Agric. Sci. 2, 229.
- Panhwar, Q.A., Naher, U.A., Jusop, S., Othman, R., Latif, M.A., Ismail, M.R., 2014. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth. PLoS One 9, e97241. Poggio, S.L., 2005. Structure of weed communities occurring in monoculture and intercropping of field pea and barley. Agric. Ecosyst. Environ. 109, 48-58.
- Raza, M.A., Khalid, M.H., Bin, Zhang, X., Feng, L.Y., Khan, I., Hassan, M.J., Ahmed, M., Ansar, M., Chen, Y.K., Fan, Y.F., 2019. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Sci. Rep. 9, 1-14.
- Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584.
- Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.
- Sikirou, R., Wydra, K., 2008. Effect of intercropping cowpea with maize or cassava on cowpea bacterial blight and yield. J. Plant Dis. Prot. 115, 145-151.
- Singh, K., Mishra, A.K., Singh, B., Singh, R.P., Patra, D.D., 2016. Tillage effects on crop yield and physicochemical properties of sodic soils. L. Degrad. Dev. 27, 223-230.
- Sivasakthi, S., Usharani, G., Saranraj, P., 2014. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. African. J. Agric. Res. 9, 1265-1277.
- Tatti, E., Goyer, C., Chantigny, M., Wertz, S., Zebarth, B.J., Burton, D.L., Filion, M., 2014. Influences of over winter conditions on denitrification and nitrous oXide-producing microorganism abundance and structure in an agricultural soil amended with different nitrogen sources. Agric. Ecosyst. Environ. 183, 47-59.
- Team, R.C., 2020. R: A Lang. Environ. Stat. Comput. Tejera-Herna ´ndez, B., Rojas-Badía, M.M., Heydrich-Pérez, M., 2011. Potencialidades del género Bacillus en la promocio ´n del crecimiento vegetal y el control biolo ´gico de hongos fitopato ´genos. Rev. Cenic. Cienc. Biolo ´gicas 42, 131-138.
- Von Mersi, W., Schinner, F., 1991. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biol. Fertil. Soils 11, 216-220.
- Wickham, H., François, R., Henry, L., Müller, K., 2019. dplyr: a grammar of data manipulation. Version 0. 8. 3.
- WRB, I.U. of S.S.W.G, 2015. World reference base for soil resources 2014 (update 2015), international soil classification system for naming soils and creating legends for soil maps. World Soil Resour. Reports. FAO, Rome.
- Xianhai, Z., Mingdao, C., Weifu, L., 2012. Improving planting pattern for intercropping in the whole production span of rubber tree. Afr. J. Biotechnol. 11, 8484-8490.
- Yang, Y.-D., Ren, Y.-F., Wang, X.-Q., Hu, Y.-G., Wang, Z.-M., Zeng, Z.-H., 2018. Ammonia-oXidizing archaea and bacteria responding differently to fertilizer type and irrigation frequency as revealed by Illumina Miseq sequencing. J. Soils Sediment. 18, 1029-1040.
- Yu, L., Tang, Y., Wang, Z., Gou, Y., Wang, J., 2019. Nitrogen-cycling genes and rhizosphere microbial community with reduced nitrogen application in maize/ soybean strip intercropping. Nutr. Cycl. Agroecosyst. 113, 35-49.
- Yu, Z., Liu, J., Li, Y., Jin, J., Liu, X., Wang, G., 2018. Impact of land use, fertilization and seasonal variation on the abundance and diversity of nirS-type denitrifying bacterial communities in a Mollisol in Northeast China. Eur. J. Soil Biol. 85, 4-11.
- Zeng, W., Li, F., Wu, C., Yu, R., Wu, X., Shen, L., Liu, Y., Qiu, G., Li, J., 2020. Role of extracellular polymeric substance (EPS) in toXicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess Biosyst. Eng. 43, 153-167.
- Zhang, H., Jiang, Z., Liu, L., Zheng, X., Li, S., Zhang, J., Wang, J., He, Q., Lv, W., 2015. Effects of intercropping on microbial community function and diversity in continuous watermelon cropping soil. Fresenius Environ. Bull. 24, 3288-3294.
- Zhang, M., Wang, N., Hu, Y., Sun, G., 2018. Changes in soil physicochemical properties and soil bacterial community in mulberry (Morus alba L.)/alfalfa (Medicago sativa L.) intercropping system. Microbiologyopen 7, e00555.
- Zhang, W., Liu, G., Sun, J., Fornara, D., Zhang, L., Zhang, F., Li, L., 2017. Temporal dynamics of nutrient uptake by neighbouring plant species: Evidence from intercropping. Funct. Ecol. 31, 469-479.
- Zhou, Q., Chen, J., Xing, Y., Xie, X., Wang, L., 2019. Influence of intercropping Chinese milk vetch on the soil microbial community in rhizosphere of rape. Plant Soil 440, 85- 96. Zhou, X., Wang, Z., Jia, H., Li, L., Wu, F., 2018. Continuously monocropped Jerusalem artichoke changed soil bacterial community composition and ammonia-oXidizing and denitrifying bacteria abundances. Front. Microbiol. 9, 705.
- Zhou, X., Yu, G., Wu, F., 2011. Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield. Eur. J. Soil Biol. 47, 279-287
- Thrall PH, Bever JD, Burdon JJ. Evolutionary change in agriculture: the past, present and future. Evol Appl. 2010;3(5-6):405-8.
- Nelson Eliazer, Ravichandran K, Antony U. The impact of the Green Revolution on indigenous crops of India. J Ethn Foods. 2019;6(8):1-10.
- Worldometer. World Population Clock [Internet]. Worldometers.info. 2020 [cited 2022 Jan 31]. Available from: https://www.worldometers.info/world-population/
- FAO. How to Feed the World in 2050. Rome: United Nations Food and Agriculture Organization; 2009.
- FAO. Soil is a non-renewable resource. Rome: United Nations Food and Agriculture Organization; 2015.
- Bastida F, Hernández T, Garcia C. Soil degradation and rehabilitation: microorganisms and functionality. In: Insam, H., Franke-Whittle, I., Goberna, M. Microbes at Work. Berlin: Springer; 2010. p. 253-70.
- Pankhurst C, Doube B, Gupta V. Biological indicators of soil health. Wallingford: CABI; 1997.
- Panagos P, Ballabio C, Himics M, Scarpa S, Matthews F, Bogonos M, et al. Projections of soil loss by water erosion in Europe by 2050. Environ Sci Policy. 2021;124:380-92.
- Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GP, Handa N, et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci. 2019;1(1446)
- Prăvălie R, Patriche C, Bandoc G. Quantification of land degradation sensitivity areas in Southern and Central Southeastern Europe. New results based on improving DISMED methodology with new climate data. Catena (Amst). 2017;158:309-20.
- Giorgi F, Lionello P. Climate change projections for the Mediterranean region. Glob Planet Change. 2008;63(2-3):90-104.
- Panagos P, Standardi G, Borrelli P, Lugato E, Montanarella L, Bosello F. Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degrad Dev. 2018;29(3):471-84.
- Ministerio para la transición ecológica y el reto demográfico. Informe resumen de emisiones. Madrid: Ministerio para la transición ecológica y el reto demográfico; 2022.
- European Commission. Sustainable agriculture in the EU [Internet].
- European Commission. [cited 2022 Feb 2]. Available from: https://ec.europa.eu/info/food-farming- fisheries/sustainability_en
- Goss MJ, Tubeileh A, Goorahoo D. A review of the use of organic amendments and the risk to human health. Adv. Agron. 2013;120:275-379.
- Traunfeld J. Organic Matter and Soil Amendments [Internet]. Maryland: University of Maryland Extension. 2020 [cited 2022 May 1]. Available from: https://extension.umd.edu/resource/organic-matter-and-soil-amendments
- Chen J, Arafat Y, Wu L, Xiao Z, Li Q, Khan MA, et al. Shifts in soil microbial community, soil enzymes and crop yield under peanut/maize intercropping with reduced nitrogen levels. Appl Soil Ecol. 2018;124:327-34.
- Ekman J, Goldwater A, Bradbury M, Matthews J, Rogers G. Persistence of human pathogens in manure-amended Australian soils used for production of leafy vegetables. Agriculture. 2020;11(1):14.
- Hossain MZ, von Fragstein P, Heß J. Plant origin wastes as soil conditioner and organic fertilizer: A review. J Agric Environ Sci. 2016;16(6):1362-71.
- Wang Y, Zhu Y, Zhang S, Wang Y. What could promote farmers to replace chemical fertilizers with organic fertilizers?. J Clean Prod. 2018;199:882-90.
- Bayeh B, Alemayehu G, Tadesse T, Alemayehu M. Evaluation of Nutrient Requirements of Sweet Lupine in Bread Wheat-Sweet Lupine under Additive Design Intercropping System in Northwest Ethiopia. Int J Agron. 2022;2022.
- Maitra S, Hossain A, Brestic M, Skalicky M, Ondrisik P, Gitari H, et al. Intercropping- A low input agricultural strategy for food and environmental security. Agronomy. 2021;11(2):343.
- Chamkhi I, Cheto S, Geistlinger J, Zeroual Y, Kouisni L, Bargaz A, et al. Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Ind Crops Prod. 2022;183:114958.
- Chahal I, Hooker DC, Deen B, Janovicek K, van Eerd LL. Long-term effects of crop rotation, tillage, and fertilizer nitrogen on soil health indicators and crop productivity in a temperate climate. Soil Tillage Res. 2021;213:105121.
- Gómez-Sagasti MT, Garbisu C, Urra J, Míguez F, Artetxe U, Hernández A, et al. Mycorrhizal-assisted phytoremediation and intercropping strategies improved the health of contaminated soil in a peri-urban area. Front Plant Sci. 2021;12:1146.
- Yu T, Mahe L, Li Y, Wei X, Deng X, Zhang D. Benefits of crop rotation on climate resilience and its prospects in China. Agronomy. 2022;12(2):436.
- Maitra S, Palai JB, Manasa P, Kumar DP. Potential of intercropping system in sustaining crop productivity. Int J Agric Environ Biotechnol. 2019;12(1):39-45.
- Gebru H. A review on the comparative advantages of intercropping to mono-cropping system. J Biol Agric Healthc. 2015;5(9):1-13.
- Narvaez LM. Climate Change Responsive Indigenous Knowledge Systems in Crop Farming in Albay Province, Philippines. BU R&D journal. 2019;22(2).
- Sarkar P, Upadhyay G, Raheman H. Active-passive and passive-passive configurations of combined tillage implements for improved tillage and tractive performance: A review. Span J Agric Res. 2021;19(4):e02R01.
- Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front Plant Sci. 2017;8:1617.
- Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. 2015;528(7580):60-8.
- De Corato U. Soil microbiota manipulation and its role in suppressing soil-borne plant pathogens in organic farming systems under the light of microbiome-assisted strategies. Chem Biol Technol Agric. 2020;7(1):1-26.
- Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, Manzo D, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 2018;9(1):1-13.
- Soong JL, Fuchslueger L, Marañon-Jimenez S, Torn MS, Janssens IA, Penuelas J, et al. Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Glob Chang Biol. 2020;26(4):1953-61.
- Vermeiren C, Kerckhof P, Reheul D, Smolders E. Increasing soil organic carbon content can enhance the long-term availability of phosphorus in agricultural soils. Eur J Soil Sci. 2022;73(1):e13191.
- USDA. Manage Carbon [Internet]. Washington: United States Department of Agriculture. 2022 [cited 2022 May 5]. Available from: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/pa/soils/health/?cid=nrcseprd1201408
- Basu S, Kumar G, Chhabra S, Prasad R. Role of soil microbes in biogeochemical cycle for enhancing soil fertility. In: Verma JP, Macdonald CA, Gupta V, Podile A, editors. New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam (NL): Elsevier; 2020. p. 149-57.
- Gougoulias C, Clark JM, Shaw LJ. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric. 2014;94(12):2362-71.
- Varma A, Prasad R, Tuteja N. Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. 4nd ed. Berlin (DEU): Springer; 2018.
- López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep. 2016;6(1):1-12.
- Krishna MP, Mohan M. Litter decomposition in forest ecosystems: a review. Energy Ecol Environ. 2017;2(4):236-49.
- Meng SL, Li XB, Tung CH, Wu LZ. Nitrogenase inspired artificial photosynthetic nitrogen fixation. Chem. 2021;7(6):1431-50.
- De Freitas VF, Cerezini P, Hungria M, Nogueira MA. Strategies to deal with drought- stress in biological nitrogen fixation in soybean. Appl Soil Ecol. 2022;172:104352.
- Wang Q, Sheng J, Pan L, Cao H, Li C, Lambers H, et al. Soil property determines the ability of rhizobial inoculation to enhance nitrogen fixation and phosphorus acquisition in soybean. Appl Soil Ecol. 2022;171:104346.
- Prasad R, Chhabra S, Gill SS, Singh PK, Tuteja N. The microbial symbionts: Potential for crop improvement in changing environments. In: Tuteja N, Tuteja R, Passricha N, Saifi S, editors. Advancement in crop improvement techniques. Amsterdam (NL): Elsevier; 2020.
- Mulder A, van de Graaf AA, Robertson LA, Kuenen JG. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol. 1995;16(3):177- 83.
- Gross A, Lin Y, Weber PK, Pett-Ridge J, Silver WL. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests. Ecology. 2020;101(2):e02928.
- Billah M, Khan M, Bano A, Hassan TU, Munir A, Gurmani AR. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiol J. 2019;36(10):904-16.
- Liang JL, Liu J, Jia P, Yang TT, Zeng QW, Zhang SC, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 2020;14(6):1600-13.
- Brussaard L. Ecosystem services provided by the soil biota. In: Ritz K, Wim H. Soil ecology and ecosystem services. Oxford (UK): Oxford Scholarship Online; 2012. p. 45.
- Schulte RPO, Creamer RE, Donnellan T, Farrelly N, Fealy R, O'Donoghue C, et al. Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environ Sci Policy. 2014;38:45-58.
- Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, Whittingham MJ, Fischer M. Redefining ecosystem multifunctionality. Nat Ecol Evol. 2018;2(3):427-36.
- Schwilch G, Lemann T, Berglund Ö, Camarotto C, Cerdà A, Daliakopoulos IN, et al. Assessing impacts of soil management measures on ecosystem services. Sustainability. 2018;10(12):4416.
- Bünemann EK, Bongiorno G, Bai Z, Creamer RE, de Deyn G, de Goede R. Soil quality- A critical review. Soil Biol Biochem. 2018;120:105-25.
- Jiang Z, Liu Y, Yang J, Brookes PC, Gunina A. Rhizosphere priming regulates soil organic carbon and nitrogen mineralization: The significance of abiotic mechanisms. Geoderma. 2021;385:114877.
- Basak BB, Sarkar B, Naidu R. Environmentally safe release of plant available potassium and micronutrients from organically amended rock mineral powder. Environ Geochem Health. 2021;43(9):3273-86.
- Li Y, Chang SX, Tian L, Zhang Q. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biol Biochem. 2018;121:50-8.
- Bastida F, Zsolnay A, Hernández T, García C. Past, present and future of soil quality indices: a biological perspective. Geoderma. 2008;147(3-4):159-71.
- Gianfreda L, Rao MA. Soil enzyme activities for soil quality assessment. In: Sanchez- Hernandez J, editors. Bioremediation of Agricultural Soils. Florida (US): CRC Press; 2019. p.239.
- Bastida F, Zsolnay A, Hernández T, García C. Past, present and future of soil quality indices: a biological perspective. Geoderma. 2008;147(3-4):159-71.
- Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, et al. Soil enzymology: classical and molecular approaches. Biol Fertil Soils. 2012;48(7):743-62.
- Jo J, Oh J, Park C. Microbial community analysis using high-throughput sequencing technology: a beginner's guide for microbiologists. J Microbiol. 2020;58(3):176-92.
- Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, et al. Methods of studying soil microbial diversity. J Microbiol Methods. 2004;58(2):169-88.
- Isaacs MJ, Ramadoss D, Parab AS, Manohar CS. Evaluating the bacterial diversity from the southwest coast of India using fatty acid methyl ester profiles. Curr Microbiol. 2021;78(2):649-58.
- Graham JH, Hodge NC, Morton JB. Fatty acid methyl ester profiles for characterization of glomalean fungi and their endomycorrhizae. Appl Environ Microbiol. 1995;61(1):58- 64.
- Li C, Cano A, Acosta-Martinez V, Veum KS, Moore-Kucera J. A comparison between fatty acid methyl ester profiling methods (PLFA and EL-FAME) as soil health indicators. Soil Sci Soc Am J. 2020;84(4):1153-69.
- Rincon-Florez VA, Carvalhais LC, Schenk PM. Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity. 2013;5(3):581-612.
- Nüsslein K, Tiedje JM. Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol. 1999;65(8):3622-6.
- Kumar P, Singh A, Sachan A, Sachan SG. Molecular Tools for Microbial Diversity Analysis. In: Shah M, Sarkar A, Mandal S. Wastewater Treatment. Amsterdam (NL): Elsevier; 2021. p. 55-65.
- Ros M, de Souza Oliveira Filho J, Murcia MDP, Bustamante MA, Moral R, Coll MD, et al. Mesophilic anaerobic digestion of pig slurry and fruit and vegetable waste: dissection of the microbial community structure. J Clean Prod. 2017;156:757-65.
- Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J. Microarray applications in microbial ecology research. Microb Ecol. 2006;52(2):159-75.
- Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol. 2017;35(9):833-44.
- Robertson R. 16S rRNA Gene Sequencing vs. Shotgun Metagenomic Sequencing [Internet].
- Richmond (Canada). Microbiome Insights Blog; 2020 [updated 2020; cited 2022 Feb 23]. Available from: https://blog.microbiomeinsights.com/16s-rrna-sequencing- vs-shotgun-metagenomic- sequencing#:~:text=As%2016S%20rRNA%20sequencing%20uses,may%20obscure%20 the%20microbiome%20results.
- Biomarker Technologies. What is 16S/18S/ITS amplicon sequencing? [Internet].
- Beijing (CHN). Biomarker Technologies. [date unknown] [cited 2022 Apr 10]. Available from: http://en.biomarker.com.cn/tgs-services/amplicon-sequencing
- VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008;44(5):619-26.
- Zhu X, Mao L, Chen B. Driving forces linking microbial community structure and functions to enhanced carbon stability in biochar-amended soil. Environ Int. 2019;133:105211.
- Silva GGZ. Who Is There and What are They Doing? An Agile and Computationally Efficient Framework for Genome Discovery and Annotation from Metagenomic Big Data. [Dissertation].
- San Diego: Claremont Graduate University and San Diego State University. [cited 2022 Feb 15] Available from: https://www.proquest.com/docview/1906983555?pq- origsite=gscholar&fromopenview=true
- Slatko BE, Gardner AF, Ausubel FM. Overview of next-generation sequencing technologies. Curr Protoc Mol Biol. 2018;122(1):e59.
- Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108(Supplement 1):4516-22.
- Teng F, Darveekaran Nair SS, Zhu P, Li S, Huang S, Li X, et al. Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Sci Rep. 2018;8(1):1-12.
- Jones CB, White JR, Ernst SE, Sfanos KS, Peiffer LB. Incorporation of Data From Multiple Hypervariable Regions when Analyzing Bacterial 16S rRNA Gene Sequencing Data. Front Genet. 2022;13.
- Smith DP, Peay KG. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS One. 2014;9(2):e90234.
- White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York (US): Academic Press; 1990. p.315-22.
- Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10-2.
- Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW. Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat Methods. 2012;9(5):425-6.
- Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME
- Nat Biotechnol. 2019;37(8):852-7.
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537-41.
- Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-3.
- Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems. 2017;2(2):e00191-16.
- Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41(D1):D590-6.
- Abarenkov K, Nilsson RH, Larsson KH, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi-recent updates and future perspectives. New Phytol. 2010;186(2):281-5.
- DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069-72.
- Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-11.
- Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353(6305):1272-7.
- Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814-21.
- Aßhauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;31(17):2882-4.
- Dukunde A, Schneider D, Schmidt M, Veldkamp E, Daniel R. Tree species shape soil bacterial community structure and function in temperate deciduous forests. Front Microbiol. 2019;1519.
- Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353(6305):1272-7.
- Toole DR. Picrust2 and tax4fun2: a comparison of bacterial functional predictions tools in southwest florida soils. [Dissertation]: Florida (US): University of Florida; 2019. [cited 2022 Feb 25] Available from: https://ufdc.ufl.edu/UFE0056189/00001/pdf
- Douglas GM, Beiko RG, Langille MGI. Predicting the functional potential of the microbiome from marker genes using PICRUSt. In: Beiko RG, Hsiao W, Parkinson J. Microbiome analysis. New York (US): Humana Press; 2018. p. 169-77.
- Bain SA, Plaisier H, Anderson F, Cook N, Crouch K, Meagher TR, et al. Bringing bioinformatics to schools with the 4273pi project. PLoS Comput Biol. 2022;18(1):e1009705.
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing [Internet]. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria; 2021 [cited 2022 May 1].
- Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5-7. 2020 [cited 2022 May 1];
- Deng Y, Jiang YH, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses. BMC Bioinformatics. 2012;13(1):1-20.
- Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):1-18.
- Csardi G, Nepusz T. The igraph software package for complex network research. Int J complex syst. 2006;1695(5):1-9.
- Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, et al. A travel guide to Cytoscape plugins. Nat Methods. 2012;9(11):1069-76.
- Meena RS, Yadav A, Kumar S, Jhariya MK, Jatav SS. Agriculture ecosystem models for CO2 sequestration, improving soil physicochemical properties, and restoring degraded land Ecol Eng. 2022;176:106546.
- Wang Y, Zhang P, Sun H, Jia X, Zhang C, Liu S. Vertical patterns and controlling factors of soil nitrogen in deep profiles on the Loess Plateau of China. Catena (Amst). 2022;215:106318.
- Zeng W, Wang Z, Chen X, Yao X, Wang W. Increased nitrogen availability alters soil carbon quality by regulating microbial r-K growth strategy, metabolic efficiency, and biomass in degraded temperate grasslands. Land Degrad Dev. 2021;32(13):3550-60.
- Fernández-Alonso MJ, Díaz-Pinés E, Rubio A. Drivers of soil respiration in response to nitrogen addition in a Mediterranean mountain forest. Biogeochemistry. 2021;155(3):305-21.
- Paliy O, Shankar V. Application of multivariate statistical techniques in microbial ecology. Mol Ecol. 2016;25(5):1032-57.
- Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol. 2007;62(2):142-60.
- Chen J, Qu M, Zhang J, Xie E, Zhao Y, Huang B. Improving the spatial prediction accuracy of soil alkaline hydrolyzable nitrogen using GWPCA-GWRK. Soil Sci Soc Am J. 2021;85(3):879-92.
- Devine SM, Steenwerth KL, O'Geen AT. A regional soil classification framework to improve soil health diagnosis and management. Soil Sci Soc Am J. 2021;85(2):361-78.
- Cheng J, Yang Y, Yuan MM, Gao Q, Wu L, Qin Z, et al. Winter warming rapidly increases carbon degradation capacities of fungal communities in tundra soil: Potential consequences on carbon stability. Mol Ecol. 2021;30(4):926-37.
- Li S, Yao Q, Liu J, Yu Z, Li Y, Jin J, et al. Liming mitigates the spread of antibiotic resistance genes in an acid black soil. Sci Total Environ. 2022;152971.
- Tiefenbacher A, Weigelhofer G, Klik A, Mabit L, Santner J, Wenzel W, et al. Antecedent soil moisture and rain intensity control pathways and quality of organic carbon exports from arable land. Catena (Amst). 2021;202:105297.
- Zhang J, Zheng F, Li Z, Feng Z. A novel optimal data set approach for erosion-impacted soil quality assessments-A case-study of an agricultural catchment in the Chernozem region of Northeast China. Land Degrad Dev. 2022;33(7):1062-75.
- Xie X, Wu T, Zhu M, Jiang G, Xu Y, Wang X, et al. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline Land Ecol Indic. 2021;120:106925.
- Bünemann EK, Bongiorno G, Bai Z, Creamer RE, de Deyn G, de Goede R, et al. Soil quality-A critical review. Soil Biol Biochem. 2018;120:105-25.
- Hong J, Karaoz U, de Valpine P, Fithian W. To rarefy or not to rarefy: robustness and efficiency trade-offs of rarefying microbiome data. Bioinformatics. 2022;38(9):2389-96.
- Wang S, Schneider D, Hartke TR, Ballauff J, de Melo Moura CC, Schulz G, et al. Optimising High-Throughput Sequencing Data Analysis, from Gene Database Selection to the Analysis of Compositional Data: A Case Study on Tropical Soil Nematodes. Available at SSRN 4078698. 2022;
- Fierer N, Wood SA, de Mesquita CPB. How microbes can, and cannot, be used to assess soil health. Soil Biol Biochem. 2021;153:108111.
- Whittaker RJ, Willis KJ, Field R. Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr. 2001;28(4):453-70.
- Shannon CE. The mathematical theory of communication. GetMobile. 2001;5(1):3-55.
- Chao A, Colwell RK, Lin CW, Gotelli NJ. Sufficient sampling for asymptotic minimum species richness estimators. Ecology. 2009;90(4):1125-33.
- Shang S, Hu S, Liu X, Zang Y, Chen J, Gao N, et al. Effects of Spartina alterniflora invasion on the community structure and diversity of wetland soil bacteria in the Yellow River Delta. Ecol Evol. 2022;12(5):e8905.
- Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47(260):583-621.
- Wilcoxon F. Individual comparisons by ranking methods. In: Normal J, editors. Breakthroughs in statistics. New York: Springer; 1992. p. 196-202.
- Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugen. 1936;7(2):179-88.
- Olesen JM, Bascompte J, Dupont YL, Jordano P. The modularity of pollination networks. Proc Natl Acad Sci. 2007;104(50):19891-6.
- Pons P, Latapy M. Computing communities in large networks using random walks. In: Yolum P, Güngör T, Gürgen F, Özturan C, editors. International symposium on computer and information sciences. Berlin (DEU): Springer; 2005. p. 284-93.
- Newman MEJ. Finding community structure in networks using the eigenvectors of matrices. Phys Rev E. 2006;74(3):036104.
- Deng F, Wang H, Xie H, Bao X, He H, Zhang X, et al. Low-disturbance farming regenerates healthy deep soil toward sustainable agriculture-Evidence from long-term no- tillage with stover mulching in Mollisols. Sci Total Environ. 2022;825:153929.
- Langfelder P, Horvath S. Eigengene networks for studying the relationships between co- expression modules. BMC Syst Biol. 2007;1(1):1-17.
- Horvath S, Dong J. Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol. 2008;4(8):e1000117.
- Kuppe CW, Schnepf A, von Lieres E, Watt M, Postma JA. Rhizosphere models: their concepts and application to plant-soil ecosystems. Plant Soil. 2022;1-39.
- Pot V, Gerke KM, Ebrahimi A, Garnier P, Baveye PC. Microscale Modelling of Soil Processes: Recent Advances, Challenges, and the Path Ahead. Front Environ Sci. 2021;632.
- Liu J, Shu A, Song W, Shi W, Li M, Zhang W, et al. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma. 2021;404:115287.
- Nie NH, Bent DH, Hull CH. SPSS: Statistical package for the social sciences. Vol. 227. McGraw-Hill New York; 1975.
- Clarke KR, Gorley RN. PRIMER: Getting started with v6". PRIMER-E: Plymouth. 2006;931:932.
- Mitchell K, Ronas J, Dao C, Freise AC, Mangul S, Shapiro C, et al. PUMAA: A platform for accessible microbiome analysis in the undergraduate classroom. Front Microbiol. 2020;2460.
- Shanmugam G, Lee SH, Jeon J. EzMAP: Easy Microbiome Analysis Platform. BMC Bioinformatics. 2021;22(1):1-10.
- Buza TM, Tonui T, Stomeo F, Tiambo C, Katani R, Schilling M, et al. iMAP: an integrated bioinformatics and visualization pipeline for microbiome data analysis. BMC Bioinformatics. 2019;20(1):1-18.
- Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics. 2011;12(1):1-10.
- Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion MJ, Berger B, et al. Calypso: a user- friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics. 2017;33(5):782-3.
- Charney N, Record S, Charney MN. Vegetarian: Jost diversity measures for community data. R package version 1.2. [cited 2022 May 26]; Available from: http://rmirror.lau.edu.lb/web/packages/vegetarian/index.html
- Olson ND, Shah N, Kancherla J, Wagner J, Paulson JN, Corrada Bravo H. metagenomeFeatures: An R package for working with 16S rRNA reference databases and marker-gene survey feature data. Bioinformatics. 2019;35(19):3870-2.
- Andersen KS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. BioRxiv. 2018;299537.
- Di Cola V, Broennimann O, Petitpierre B, Breiner FT, d'Amen M, Randin C, et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography. 2017;40(6):774-87.
- Kindt R, Kindt MR. Biodiversity R: Package for Community Ecology and Suitability Analysis, R Package Version 2.9-2. [cited 2022 May 26]; Available from: https://cran.r- project.org/web/packages/BiodiversityR/index.html
- Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol Evol. 2016;7(12):1451-6.
- McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217.
- Ssekagiri AT. microbiomeSeq: An R package for analysis of microbial communities in an environmental context [Dissertation]. Glasgow (UK): University of Glasgow; 2017. [cited 2022 Feb 15] Available from: https://userweb.eng.gla.ac.uk/umer.ijaz/projects/Alfred\_Ssekagiri\_2018.pdf
- Lahti L, Shetty S. Introduction to the microbiome R package. 2018;
- Carpenter CM, Frank DN, Williamson K, Arbet J, Wagner BD, Kechris K, et al. tidyMicro: a pipeline for microbiome data analysis and visualization using the tidyverse in R. BMC Bioinformatics. 2021;22(1):1-13.
- Li D, Li MD, LazyData T, Imports FD. Package 'hillR.'. Ann Rev Ecol Evol Syst. 2014;45(1):297-324.
- Liu C, Cui Y, Li X, Yao M. microeco: an R package for data mining in microbial community ecology. FEMS Microbiol Ecol. 2021;97(2):fiaa255.