IRN GeoMech workshop on hydromechanical instabilities. Booklet of abstracts (original) (raw)
Abstract
Dear all, It is our pleasure to welcome you in Aix-en-Provence for this international workshop co-organized by the international research network GeoMech and the research department AQUA of INRAE. Granular materials are involved in many natural hazards, such as landslides, avalanches, dike or dam failures, etc. Due to their discrete nature, they have a complex mechanical behavior resulting from local interactions between grains and collective behaviors organized at different scales. Thus, the failure modes of geomaterials can take several forms: diffuse failure possibly resulting in liquefaction, localized failure with shear bands at several scales (from a few grains to the size of the complete system), mixed mode failure, etc. Moreover, granular materials being porous, they are very often subjected to water infiltration likely to induce important changes of microstructure that can affect their physical, hydraulic and mechanical properties. The main objective of this workshop is to review recent advances in the understanding of the elementary mechanisms of destabilization of granular materials and their impact on failure modes (e.g. liquefaction, strain localization). The topics addressed during the workshop may be related, for instance, to the mechanical response and stability of geomaterials in the presence of capillary or solid bridges (sintering, biocalcification, dissolution/precipitation, ...), internal erosion (suffusion and clogging), surface erosion, etc. We hope that the list of forthcoming talks will lead to fruitful discussion and possibly to future collaborations.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (72)
- S. Courrech du Pont, P. Gondret, B. Perrin, M. Rabaud, Phys. Rev. Lett., 90, 044301 (2003)
- E. Lajeunesse, J. Monnier, G. Homsy, Phys. Fluids, 17, 103302 (2005)
- E. Thompson, H. Huppert, J. Fluid Mech., 575, 177-186 (2007)
- L. Rondon, O. Pouliquen, P. Aussillous, Phys. Fluids, 23, 073301 (2011)
- A. Bougouin, L. Lacaze, Phys. Rev. Fluids, 6, 23, (2018).
- G. Pinzon, M. Cabrera, Phys. Fluids, 31(8), 086603 (2019)
- V. Topin, Y. Monerie, F. Perales, and F. Radjai, Phys. Rev. Lett. 109, 188001 (2012).
- Sarlin, W., Morize, C., Sauret, A., & Gondret, P. Phys. Rev. E, 104(6), 064904 (2021).
- M. Cabrera, N. Estrada, J. Geophys. Res. Solid Earth, 126 (9), e2021JB022589 (2021).
- O. Polanía, M. Cabrera, M. Renouf, E. Azéma, Phys. Rev. Fluids. (2022).
- He, K., Shi, H., & Yu, X. Physics of Fluids, 33(10), 103311 (2021).
- Abele, G., & Gow, A. J. (1975). Compressibility characteristics of compacted snow. Tech. rep., CRREL References R. Charlier. Approche unifiee de quelques problemes non lineaires de mecanique des milieux continus par la methode des elements finis. 1989.
- J.-Y. Delenne, M. S. El Youssoufi, F. Cherblanc, and J.-C. Bénet. Mechanical behaviour and failure of cohesive granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 28(15):1577-1594, 2004.
- J. Desrues, A. Argilaga, D. Caillerie, G. Combe, T. K. Nguyen, V. Richefeu, and S. Dal Pont. From discrete to continuum modelling of boundary value problems in geomechanics: An integrated fem-dem approach. International Journal for Numerical and Analytical Methods in Geomechanics, 43 (5):919-955, 2019.
- T.-K. Nguyen, J. Desrues, T.-T. Vo, and G. Combe. Fem× dem multi-scale model for cemented granular materials: Inter-and intra-granular cracking induced strain localisation. International Journal for Numerical and Analytical Methods in Geomechanics, 46(5):1001-1025, 2022.
- M. Stasiak. Uniaxial compression of a highly crushable granular material-a 3D DEM study. PhD thesis, Université Grenoble Alpes, 2019.
- M. Stasiak, G. Combe, V. Richefeu, G. Armand, and J. Zghondi. High compression of granular assemblies of brittle hollow tubular particles: investigation through a 3d discrete element model. Computational Particle Mechanics, 9:1-18, 2022.
- References P.-Y. Hicher. Modelling the impact of particle removal on granular material behaviour. Géotechnique, 63(2):118-128, 2013.
- W. Hu, P.-Y. Hicher, G. Scaringi, Q. Xu, T. Van Asch, and G. Wang. Seismic precursor to instability induced by internal erosion in loose granular slopes. Géotechnique, 68(11):989-1001, 2018.
- Z.-Y. Yin, J. Zhao, and P.-Y. Hicher. A micromechanics-based model for sand-silt mixtures. International journal of solids and structures, 51(6):1350-1363, 2014.
- Bonelli S. (edt). Erosion in geomechanics applied to dams and levees, Wiley, 388 p., 2013.
- Bonelli S., Nicaise S., Charrier G., Chaouch N., Byron F., Gremeaux Y. (2018), Quantifying the erosion resistance of dikes with the overflowing simulator, 3rd International Conference on Protection against Overtopping, 6-8 June 2018, UK.
- Cantré S., Olschewski J., Saathoff F. (2017). Full-Scale Flume Experiments to Analyze the Surface Erosion Re- sistance of Dike Embankments Made of Dredged Mate-rials, J. Waterway Port. Coast. Ocean. Eng. ASCE.
- Nerincx N., Bonelli S., Mercier F., Cornacchioli F., Fry J.-J., Herrier G., Richard J.-M., Puiatti D., Tachker P. (2018), DigueElite overflow resistant lime treated soils for dikes and earthdams, 26th International Congress on Large Dam, Vienna, Austria, 4-6 July.
- Donaghe, R. T. and Torrey III, V. H. (1985), Strength and deformation properties of earth- rock mixtures., Technical report, Army Engineer Waterway Experiment Station Vicksburg MS Geotechnical Lab.
- El Dine, B. S. (2007), Etude du comportement mécanique de sols grossiers à matrice, PhD thesis, Ecole des Ponts ParisTech.
- Reiffsteck, P., Arbault, J., Sagnard, N., Khay, M., Subrin, D., Chapeau, C. and Levacher, D. (2007), 'Mesures en laboratoire du comportement mécanique des sols hétérogènes', Bulletin des laboratoires des ponts et chaussées (268-269).
- A. Alshibli and S. Sture. Shear band formation in plane strain experiments of sand. Journal of Geotechnical and Geoenvironmental Engineering, 126(6):495-503, 2000.
- J. Arthur, T. Dunstan, Q. Al-Ani, and A. Assadi. Plastic deformation and failure in granular media. Geotechnique, 27(1):53-74, 1977.
- F. Darve, F. Nicot, A. Wautier, and J. Liu. Slip lines versus shear bands: two competing localization modes. Mechanics Research Communications, 114:103603, 2021.
- D. Fenistein, J. W. van de Meent, and M. van Hecke. Universal and wide shear zones in granular bulk flow. Physical Review Letters, 92(9):094301, 2004.
- A. Hegde and T. G. Murthy. Experimental studies on deformation of granular materials during orthogonal cutting. Granular Matter, 24(3):1-22, 2022.
- P. Jop, Y. Forterre, and O. Pouliquen. A constitutive law for dense granular flows. Nature, 441 (7094):727-730, 2006.
- G. MiDi. On dense granular flows. The European Physical Journal E, 14(4):341-365, 2004.
- D. M. Mueth, G. F. Debregeas, G. S. Karczmar, P. J. Eng, S. R. Nagel, and H. M. Jaeger. Signatures of granular microstructure in dense shear flows. Nature, 406(6794):385-389, 2000.
- R. Nedderman and C. Laohakul. The thickness of the shear zone of flowing granular materials. Powder Technology, 25(1):91-100, 1980.
- K. K. Rao and P. R. Nott. An introduction to granular flow/k. kesava rao, prabhu r. nott., 2008.
- J. R. Rice. Theoretical and applied mechanics. In Proc. of the 14th IUTAM Congress, North-Holland, Amsterdam, Netherlands, 1976, pages 207-220, 1976.
- K. H. Roscoe. The influence of strains in soil mechanics. Geotechnique, 20(2):129-170, 1970.
- D. Sagapuram, K. Viswanathan, K. P. Trumble, and S. Chandrasekar. A common mechanism for evolution of single shear bands in large-strain deformation of metals. Philosophical Magazine, 98 (36):3267-3299, 2018.
- I. Vardoulakis. Shear band inclination and shear modulus of sand in biaxial tests. International Journal for Numerical and Analytical Methods in Geomechanics, 4(2):103-119, 1980.
- A. Wautier, S. Bonelli, and F. Nicot. Scale separation between grain detachment and grain transport in granular media subjected to an internal flow. Granular Matter, 19(2):22, 2017.
- References R. Hill. A general theory of uniqueness and stability in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 6(3):236-249, 1958.
- F. Laouafa, F. Prunier, A. Daouadji, H. A. Gali, and F. Darve. Stability in geomechanics, exper- imental and numerical analyses. International Journal for Numerical and Analytical Methods in Geomechanics, 35(2):112-139, 2011.
- G.-C. Cho, J. Dodds and J. C. Santamarina, Particle shape effects on packing density, stiffness, and strength: natural and crushed sands, J. of Geotechnical and Geoenvironmental Engineering, 132(5), 2006
- R. Kawamoto, E. Andò, G. Viggiani, and J. E. Andrade, Level set discrete element method for three-dimensional computations with triaxial case study. J. of the Mechanics and Physics of Solids, 91, 2016
- T. Mohamed, J. Duriez, G. Veylon and L. Peyras, DEM models using direct and indirect shape descriptions for Toyoura sand along monotonous loading paths, Computers and Geotechnics, 142, 2022
- V. Šmilauer et al., Yade Documentation 3rd ed. The Yade Project (http://yade-dem.org/doc/)
- J. Eliáš, Simulation of railway ballast using crushable polyhedral particles, Powder Technology, 264, 2014
- J. Duriez and C. Galusinski, A Level Set-Discrete Element Method in YADE for numerical, micro-scale, geomechanics with refined grain shapes, Computers & Geosciences, 157, 2021
- J. Duriez and S. Bonelli, Precision and computational costs of Level Set-Discrete Element Method (LS-DEM) with respect to DEM, Comp. & Geotechnics, 134, 2021
- B. Li, Effect of fabric anisotropy on the dynamic mechanical behavior of granular materials. Ph.D. thesis, Case Western Reserve University, 2011
- References Chang, D.S., and L.M. Zhang (2013). Critical hydraulic gradients of internal erosion under complex stress states. J. Geotech. Geoenviron. Eng., Vol. 139, No. 9, pp. 1454-1467
- Fell, R., and J. J. Fry. (2013). Erosion in geomechanics applied to dams and levees. Bonelli S. Editor., ISTE-Wiley., pp. 1-99.
- Garner, S.J., and R.J. Fannin (2010). Understanding internal erosion: a decade of research following a sinkhole event. The International Journal on Hydropower and Dams, 17, pp. 93-98
- Marot, D., P. L. Regazzoni, and T. Wahl (2011). Energy based method for providing soil surface erodibility rankings. J. Geotech. Geoenviron. Eng., Vol. 137, No. 12, pp. 1290-1293.
- Marot, D., A. Rochim, H. H. Nguyen, F. Bendahmane, and L. Sibille (2016). Assessing the susceptibility of gap graded soils to internal erosion characterization: proposition of a new experimental methodology. Nat. Hazards, Vol. 83, No. 1, pp. 365-388.
- Rochim, A., D. Marot, L. Sibille, and V. T. Le (2017). Effect of hydraulic loading history on suffusion susceptibility of cohesionless soils. J. Geotech. Geoenviron. Eng., Vol. 143, No. 7, Sibille, L., F. Lominé, P. Poullain, Y. Sail, and D. Marot (2015). Internal erosion in granular media: direct numerical simulations and energy interpretation. Hydrological Processes, Vol. 29, No. 9, pp. 2149- 2163.
- Skempton, A. W., and J. M. Brogan (1994). Experiments on piping in sandy gravels. Géotechnique, Vol. 44, No. 3, pp. 440-460.
- S. Bonelli, Erosion of Geomaterials. Wiley, 2012.
- J. Fry, "Introduction to the Process of Internal Erosion in Hydraulic Structures: Embankment Dams and Dikes," in Erosion of Geomaterials, Wiley, 2012, pp. 1-37.
- S. Bonelli, Erosion in Geomechanics Applied to Dams and Levees. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013.
- N. Benahmed and S. Bonelli, "Investigating concentrated leak erosion behaviour of cohesive soils by performing hole erosion tests," European Journal of Environmental and Civil Engineering, vol. 16, no. 1, pp. 43-58, 2012.
- K. Yin et al., "Influence of sample preparation on the multi scale structure of sand-clay mixtures," E3S Web of Conferences, vol. 92, p. 01007, 2019.
- Brunier-Coulin, Cuéllar, and Philippe. Erosion onset of a cohesionless granular medium by an immersed impinging round jet. Phys. Rev. Fluids, 2:034302, 2017.
- Cui. Numerical simulation of internal fluidisation and cavity evolution due to a leaking pipe using the coupled DEM-LBM technique. PhD thesis, University of Birmingham, 2013.
- Cui, Li, Chan, and Chapman. A 2d dem-lbm study on soil behaviour due to locally injected fluid. Particuology, 10(2):242-252, 2012.
- Cui, Li, Chan, and Chapman. Coupled dem-lbm simulation of internal fluidisation induced by a leaking pipe. Powder Technology, 254:299-306, 2014.
- Farhat, Luu, Philippe, and Cuéllar. Multi-scale cohesion force measurements for cemented granular materials.
- Mena, Luu, Cuéllar, Philippe, and Curtis. Parameters affecting the localized fluidization in a particle medium. AIChE Journal, 63(5):1529-1542, 2017.
- Mena, Brunier, Curtis, and Philippe. Experimental observation of the initial stages of localized fluidization. In 2018 AIChE Annual Meeting. AIChE, 2018.
- Philippe and Badiane. Localized fluidization in a granular medium. Physical Review E, 87(4): 042206, 2013.