Epitaxial YBa2Cu3O7−xnanocomposite thin films from colloidal solutions (original) (raw)
Related papers
Epitaxial YBa2Cu3O7−xnanocomposite thin films from colloidal solutions
Superconductor Science and Technology, 2015
A methodology of general validity to prepare epitaxial nanocomposite films is reported based on the use of colloidal solutions containing different crystalline preformed oxide nanoparticles (ex-situ nanocomposites). The trifluoroacetate (TFA) metal-organic chemical solution deposition route is used with alcoholic solvents to grow epitaxial YBa 2 Cu 3 O 7 (YBCO) films. For that reason stabilizing oxide nanoparticles in polar solvents is a challenging goal. We have used scalable nanoparticle synthetic methodologies such as thermal and microwave-assisted solvothermal techniques to prepare CeO 2 and ZrO 2 nanoparticles. We show that stable and homogeneous colloidal solutions with these nanoparticles can be reached using benzyl alcohol, triethyleneglycol, nonanoic acid, trifluoroacetic acid or decanoic acid as protecting ligands, thereby allowing subsequent mixing with alcoholic TFA solutions. An elaborate YBCO film growth analysis on these nanocomposites allows the identification of the different relevant growth phenomena, e.g. nanoparticle pushing towards the film surface, nanoparticle reactivity, coarsening and nanoparticle accumulation at the substrate interface. Upon mitigation of these effects, YBCO nanocomposite films with high self-field critical currents (J c ∼3-4 MA/cm 2 at 77 K) were reached, indicating no current limitation effects associated to epitaxy perturbation, while smoothed magnetic field dependences of the critical currents at high magnetic fields and decreased effective anisotropic pinning behavior confirms the effectiveness of the novel developed approach to enhance vortex pinning. In conclusion, a novel low cost solution-derived route to high current nanocomposite superconducting films and coated conductors has been developed with very promising features.
YBa2Cu3O7-x thin films prepared by Chemical Solution Deposition
2009
The discovery of superconductivity in ceramic materials by Bednorz and Müller [2, 3] in early 1987, immediately followed by Wu et al. [4, 5] who showed that YBa 2 Cu 3 O 7−x (YBCO) becomes superconducting (92 K) well above the boiling point of nitrogen (77 K) created a great excitement in superconductivity research. Potential applications of high T c-superconductors require large critical currents and high-applied magnetic fields. Effective ways to increase the critical current density at high magnetic fields in YBCO are the introduction of nanoparticles and chemical substitution of yttrium by other rare earth elements. Since low costs and environmental compatibility are essential conditions for the preparation of long length YBCO films, the cost effective chemical solution deposition (CSD) procedure was selected, given that no vacuum technology is required. To reveal the flexibility and the good optimization possibilities of the CSD approach two main processes were chosen for comparison: a fluorine-free method, namely the polymer-metal precursor technique, and a fluorine-based method, the metalorganic deposition (MOD) using the trifluoroacetates (TFA) technique. Sharp transition temperature widths ∆T c of 1.1 K for the polymer metal method, 0.8 K for TFA method and critical current densities J c of ≈3.5 MA/cm 2 shows that high quality YBCO thin films can be produced using both techniques. Especially interesting is the magnetic field dependence of the critical current density J c (B) of the Y(Dy)BCO (80 %) films showing that for the lower magnetic fields the critical current density J c (B) is higher for a standard YBCO film, but at fields higher than 4.5 T the critical current density J c (B) of Y(Dy)BCO is larger than that for the YBCO. Above 8 T, J c (B) of the Y(Dy)BCO film is more than one order of magnitude higher than in pure YBCO film. Kurzfassung Die Entdeckung der Supraleitung in keramischen Materialien durch Bednorz und Müller 1987 [2, 3] und die kurz darauf folgende Beobachtung von Wu et al. [4, 5], dass YBa 2 Cu 3 O 7−x (YBCO) supraleitende Eigenschaften deutlich oberhalb (92 K) des Siedepunktes von Stickstoff (77 K) aufweist, führten zu einer enormen Intensivierung der Forschung hinsichtlich neuer supraleitender Materialien sowie deren Eigenschaften und möglichen Einsatzgebieten. Potentielle Anwendungsgebiete für diese neuen Hochtemperatur-Supraleiter erfordern hohe kritische Stromdichten und Arbeit wird gezeigt, dass besonders die TFA-Methode besonders geeignet ist, um (RE)BCO-Schichten (RE: rare earth) herzustellen. Untersucht wurden verschiedene Zusammensetzungen mit Sm, Dy und Ho. Außerordentlich interessant sind dabei die Ergebnisse für Y(Dy)BCO-Schichten. Schichten mit einem Dy-Gehalt von 80 % zeigen oberhalb von 4.5 T deutlich höhere kritische Stromdichten als reine YBCO-Schichten. Bei Magnetfeldern größer als 8 T beträgt der Unterschied mehr als eine Größenordnung.