3D morphology-based clustering and simulation of human pyramidal cell dendritic spines (original) (raw)

The common approach in morphological analysis of dendritic spines is to categorize spines into subpopulations based on whether they are stubby, mushroom, thin, or filopodia. Corresponding cellular models of synaptic plasticity, long-term potentiation, and long-term depression associate synaptic strength with either spine enlargement or spine shrinkage. Although a variety of automatic spine segmentation and feature extraction methods were developed recently, no approaches allowing for an automatic and unbiased distinction between dendritic spine subpopulations and detailed computational models of spine behavior exist.We propose an automatic and statistically based method for the unsupervised construction of spine shape taxonomy based on arbitrary features. The taxonomy is then utilized in the newly introduced computational model of behavior, which relies on transitions between shapes. Models of different populations are compared using supplied bootstrap-based statistical tests.We com...