Brief report: STING expressed in tumor and non-tumor compartments has distinct roles in regulating anti-tumor immunity (original) (raw)
Related papers
STING-Dependent Cytosolic DNA Sensing Mediates Innate Immune Recognition of Immunogenic Tumors
Immunity, 2014
Spontaneous T cell responses against tumors occur frequently and have prognostic value in patients. The mechanism of innate immune sensing of immunogenic tumors leading to adaptive T cell responses remains undefined, although type I interferons (IFNs) are implicated in this process. We found that spontaneous CD8 + T cell priming against tumors was defective in mice lacking stimulator of interferon genes complex (STING), but not other innate signaling pathways, suggesting involvement of a cytosolic DNA sensing pathway. In vitro, IFN-b production and dendritic cell activation were triggered by tumor-cellderived DNA, via cyclic-GMP-AMP synthase (cGAS), STING, and interferon regulatory factor 3 (IRF3). In the tumor microenvironment in vivo, tumor cell DNA was detected within host antigen-presenting cells, which correlated with STING pathway activation and IFN-b production. Our results demonstrate that a major mechanism for innate immune sensing of cancer occurs via the host STING pathway, with major implications for cancer immunotherapy.
STING promotes the growth of tumors characterized by low antigenicity via IDO activation
Cancer research, 2016
Cytosolic DNA sensing is an important process during the innate immune response that activates the Stimulator of Interferon Genes (STING) adaptor and induce interferon type I (IFN-I). STING incites spontaneous immunity during immunogenic tumor growth and accordingly, STING agonists induce regression of therapy-resistant tumors. However DNA, STING agonists and apoptotic cells can also promote tolerogenic responses via STING by activating immunoregulatory mechanisms such as indoleamine 2,3 dioxygenase (IDO). Here, we show that IDO activity induced by STING activity in the tumor microenvironment (TME) promoted the growth of Lewis lung carcinoma (LLC). While STING also induced IDO in tumor-draining lymph nodes (TDLNs) during EL4 thymoma growth, this event was insufficient to promote tumorigenesis. In the LLC model, STING ablation enhanced CD8+ T cell infiltration and tumor cell killing while decreasing myeloid-derived suppressor cell infiltration and IL-10 production in the TME. Depleti...
cGAS/STING Pathway in Cancer: Jekyll and Hyde Story of Cancer Immune Response
International journal of molecular sciences, 2017
The last two decades have witnessed enormous growth in the field of cancer immunity. Mechanistic insights of cancer immunoediting have not only enhanced our understanding but also paved the way to target and/or harness the innate immune system to combat cancer, called cancer immunotherapy. Cyclic GMP-AMP synthase (cGAS)/Stimulator of interferon genes(STING) pathway has recently emerged as nodal player in cancer immunity and is currently being explored as potential therapeutic target. Although therapeutic activation of this pathway has shown promising anti-tumor effects in vivo, evidence also indicates the role of this pathway in inflammation mediated carcinogenesis. This review highlights our current understanding of cGAS/STING pathway in cancer, its therapeutic targeting and potential alternate approaches to target this pathway. Optimal therapeutic targeting and artificial tunability of this pathway still demand in depth understanding of cGAS/STING pathway regulation and homeostasis.
STING Agonists as Cancer Therapeutics
Cancers
The interrogation of intrinsic and adaptive resistance to cancer immunotherapy has identified lack of antigen presentation and type I interferon signaling as biomarkers of non-T-cell-inflamed tumors and clinical progression. A myriad of pre-clinical studies have implicated the cGAS/stimulator of interferon genes (STING) pathway, a cytosolic DNA-sensing pathway that drives activation of type I interferons and other inflammatory cytokines, in the host immune response against tumors. The STING pathway is also increasingly understood to have other anti-tumor functions such as modulation of the vasculature and augmentation of adaptive immunity via the support of tertiary lymphoid structure development. Many natural and synthetic STING agonists have entered clinical development with the first generation of intra-tumor delivered cyclic dinucleotides demonstrating safety but only modest systemic activity. The development of more potent and selective STING agonists as well as novel delivery ...
STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity
Proceedings of the National Academy of Sciences, 2015
Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced...
Head & neck, 2017
Cyclic dinucleotides (CDNs) are bacterial intracellular messengers that have demonstrated antitumor activity in melanoma and breast tumors, although their role in immunotherapy of head and neck squamous cell cancers (HNSCCs) has not been well investigated. We measured primary tumor growth rates, mechanism of antitumor activity, and efficacy of programmed death-L1 blockade combinatorial therapy in SCCFVII tumor-bearing C3H/HeOUJ mice undergoing intratumoral injections with RR-cyclic-di-guanine (synthetic CDG), CDG (natural cyclic-di-guanine), R848 (TLR 7/8 agonist), or phosphate buffered saline (PBS, control). Intratumoral CDN treatment groups showed decreased tumor size and enhanced splenocyte Th1 response when compared to the PBS treatment control group (p < .05). The RR-CDG tumor microenvironment showed upregulated interferon (IFN)-γ+CD8+ and programmed death-L1. Combining programmed death-L1 blocking antibody with RR-CDG induced regression of established tumors. This study dem...
STING activation reverses lymphoma-mediated resistance to antibody immunotherapy
Cancer research, 2017
Tumors routinely attract and co-opt macrophages to promote their growth, angiogenesis and metastasis. Macrophages are also the key effector cell for monoclonal antibody (mAb) therapies. Here we report that the tumor microenvironment creates an immunosuppressive signature on tumor-associated macrophages (TAM) which favors expression of inhibitory rather than activating Fcγ receptors (FcγR), thereby limiting the efficacy of mAb immunotherapy. We assessed a panel of TLR and STING agonists (a) for their ability to reprogram macrophages to a state optimal for mAb immunotherapy. Both STINGa and TLRa induced cytokine release, modulated FcγR expression and augmented mAb-mediated tumor cell phagocytosis in vitro. However, only STINGa reversed the suppressive FcγR profile in vivo, providing strong adjuvant effects to anti-CD20 mAb in murine models of lymphoma. Potent adjuvants like STINGa which can improve FcγR activatory:inhibitory (A:I) ratios on TAM are appealing candidates to reprogram TA...
Pharmacological Targeting of STING-Dependent IL-6 Production in Cancer Cells
Frontiers in Cell and Developmental Biology, 2022
Activation of the STING pathway upon genotoxic treatment of cancer cells has been shown to lead to anti-tumoral effects, mediated through the acute production of interferon (IFN)-β. Conversely, the pathway also correlates with the expression of NF-κB-driven pro-tumorigenic genes, but these associations are only poorly defined in the context of genotoxic treatment, and are thought to correlate with a chronic engagement of the pathway. We demonstrate here that half of the STING-expressing cancer cells from the NCI60 panel rapidly increased expression of pro-tumorigenic IL-6 upon genotoxic DNA damage, often independent of type-I IFN responses. While preferentially dependent on canonical STING, we demonstrate that genotoxic DNA damage induced by camptothecin (CPT) also drove IL-6 production through non-canonical STING signaling in selected cancer cells. Consequently, pharmacological inhibition of canonical STING failed to broadly inhibit IL-6 production induced by CPT, although this cou...