The paraoxonases: their role in disease development and xenobiotic metabolism (original) (raw)

The three-gene paraoxonase family: Physiologic roles, actions and regulation

Atherosclerosis, 2011

The paraoxonase (PON) gene family is composed of three members (PON1, PON2, PON3) that share considerable structural homology and are located adjacently on chromosome 7 in humans. By far the most-studied member is PON1, a high-density lipoprotein-associated esterase/lactonase, also endowed with the capacity to hydrolyze organophosphates, but all the three proteins prevent oxidative stress and fight inflammation. They therefore seem central to a wide variety of human illnesses, including atherosclerosis, diabetes mellitus, mental disorders and inflammatory bowel disease. The major goal of this review is to highlight the regulation of each of the paraoxonase components by diverse nutritional molecules and pharmacological agents as well as a number of pathophysiological events, such as oxidative stress and inflammation. Considerable and detailed cell-based studies and animal model experiments have been provided to allow a thorough scrutiny of PON modulation, which will increase our understanding and ability to target these genes in order to efficiently increase their transcriptional activity and decrease the risks of developing different disorders.

Insights into the role of paraoxonase 2 in human pathophysiology

Journal of Biosciences

Paraoxonase 2 (PON2) is a ubiquitously expressed intracellular enzyme that is known to have a protective role from oxidative stress. Clinical studies have also demonstrated the significance of PON2 in the manifestation of cardiovascular and several other diseases, and hence, it is considered an important biomarker. Recent findings of its expression in brain tissue suggest its potential protective effect on oxidative stress and neuroinflammation. Polymorphisms of PON2 in humans are a risk factor in many pathological conditions, suggesting a possible mechanism of its anti-oxidative property probably through lactonase activity. However, exogenous factors may also modulate the expression and activity of PON2. Hence, this review aims to report the mechanism by which PON2 expression is regulated and its role in oxidative stress disorders such as neurodegeneration and tumor formation. The role of PON2 owing to its lactonase activity in bacterial infectious diseases and association of PON2 polymorphism with pathological conditions are also highlighted.

The paraoxonases: role in human diseases and methodological difficulties in measurement

Critical Reviews in Clinical Laboratory Sciences, 2009

Research into the paraoxonase (PON) gene family has flourished over the past few years. In the 1970s and 1980s, only PON1 was known, and the investigations were conducted, essentially, by toxicologists focusing on protection against organophosphate poisoning. Since then, two new members of the family, PON2 and PON3, have been identified, both being shown to play antioxidant and anti-inflammatory roles. Evidence exists indicating that the PON family is central to a wide variety of human illnesses such as cardiovascular disease, diabetes mellitus, metabolic syndrome, obesity, non-alcoholic steatohepatitis, and several mental disorders. However, research is hampered considerably by the methods currently available to measure the activity of these enzymes. In this review, we summarize the state of knowledge on PON biochemistry and function, the influence of genetic variations, and the involvement of PON in several diseases. The problems associated with PON measurement, such as sample acquisition, lack of reference methods, and variety of substrates, will be presented. Also, we cover some of the present lines of research and propose some others for future progress in this field.

Inflammation, infection, cancer and all that…the role of paraoxonases

Advances in experimental medicine and biology, 2014

The paraoxonase (PON) gene family consists of three members, PON1, PON2 and PON3. All PON proteins possess antioxidant properties and lipo-lactonase activities, and are implicated in the pathogenesis of several inflammatory diseases including atherosclerosis, Alzheimer's, Parkinson's, diabetes and cancer. Despite the role of PON proteins in critical cellular functions and associated pathologies, the physiological substrates and molecular mechanisms by which PON proteins function as anti-inflammatory proteins remain largely unknown. PON1 is found exclusively extracellular and associated solely with high-density lipoprotein (HDL) particles in the circulation, and, in part, confers the anti-oxidant and anti-inflammatory properties associated with HDL. Recent studies demonstrated that the intracellular PON proteins; PON2 and PON3 (i) are associated with mitochondria and mitochondria-associated membranes, (ii) modulate mitochondria-dependent superoxide production, and (iii) preve...

Tissue distribution and expression of paraoxonases and chemokines in mouse: the ubiquitous and joint localisation suggest a systemic and coordinated role

Journal of Molecular Histology, 2010

Tissue distribution and expression of paraoxonases and chemokines in mouse: the ubiquitous and joint localisation suggest a systemic and coordinated role 1 2 3 Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media B.V.. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your work, please use the accepted author's version for posting to your own website or your institution's repository. You may further deposit the accepted author's version on a funder's repository at a funder's request, provided it is not made publicly available until 12 months after publication.

Transcriptional regulation of human paraoxonase 1 by PXR and GR in human hepatoma cells

Toxicology in Vitro, 2015

Human paraoxonase 1 (PON1) is A-esterase synthesized in the liver and secreted into the plasma, where it associates with HDL. PON1 acts as an antioxidant preventing lipid oxidation and detoxifies a wide range of substrates, including organophosphate compounds. The variability of PON1 (enzyme activity/serum levels) has been attributed to internal and external factors. However, the molecular mechanisms involved in the transcriptional regulation of PON1 have not been well-studied. The aim of this study was to evaluate and characterize the transcriptional activation of PON1 by nuclear receptors (NR) in human hepatoma cells. In silico analysis was performed on the promoter region of PON1 to determine the response elements of NR. Real-time PCR was used to evaluate the effect of specific NR ligands on the mRNA levels of genes regulated by NR and PON1. The results indicated that NR response elements had 95% homology to pregnenolone (PXR), glucocorticoids (GR), retinoic acid (RXR) and peroxisomes proliferator-activated receptor alpha (PPARα). Treatments with Dexamethasone (GR ligand), Rifampicin (PXR ligand) and TCDD (AhR ligand) increased the mRNA levels of PON1 at 24 and 48 h. We showed that the activation of GR by Dexamethasone results in PON1 gene induction accompanied by an increase in activity levels. In conclusion, these results demonstrate that GR regulates PON1 gene transcription through directly binding to NR response elements at −95 to −628 bp of the PON1 promoter. This study suggests new molecular mechanisms for the transcriptional regulation of PON1 through a process involving the activation of PXR.

Human tissue distribution of paraoxonases 1 and 2 mRNA

IUBMB Life, 2000

We have studied the distribution of mRNA for paraoxonases (PON) 1 and 2 in 24 human tissues using Gene Expression Panels. PON1 mRNA was restricted to adult kidney, liver, and colon as well as fetal liver, whereas PON2 mRNA was more widely distributed in adult human brain, heart, kidney, spleen, liver, colon, lung, small intestine, muscle, stomach, testis, placenta, salivary, thyroid and adrenal glands, pancreas, skin, and bone marrow, as well as fetal brain and liver. PON2 mRNA was not found in ovary, uterus, or plasma leukocytes using the panels. However, using real time PCR, we found PON2 mRNA expression in human plasma leukocytes. There were differences between the tissue distribution of mRNAs found in this study and the immunohistochemical localization of the PON1 and PON2 proteins reported previously. In particular, PON1 protein is much more widely distributed than its mRNA, possibly indicating the delivery of PON1 to various tissues by HDL. In addition, differences between PON2 mRNA and protein distributions could be due to missence mutations in the PON2 gene, causing nontranslation of mRNA to protein in some tissues. 2010 IUBMB IUBMB Life, 62(6): 480-482, 2010

PPARS in regulation of paraoxonases

The paraoxonase (PON) group of enzymes, composed of PON1, PON2, and PON3, play an important role in decreasing oxidative stress by degrading lipid peroxides. PON1 synthesis is upregulated by PPAR. Several pharmacological compounds (acting as antioxidants and, hence, atheroprotective) stimulate both PPAR activity and PON1 expression. Recent evidence suggests that PON1 and the monocyte chemoattractant protein-1 (MCP-1) are involved in coordinating the inflammatory response in damaged tissues; PPAR may be central in the regulation of these biochemical pathways. This article reviews the state of knowledge on PON1 biochemistry and function, the influence of genetic variation, and the regulation of PON1 expression by pharmaceutical compounds that increase PPAR activity. We also describe recent lines of evidence suggesting links between PON1 and MCP-1 and how their production may be regulated by PPAR.