Genus-specific associations of marine sponges with group I crenarchaeotes (original) (raw)

Archaea Appear to Dominate the Microbiome of Inflatella pellicula Deep Sea Sponges

PLoS ONE, 2013

Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ,60% and ,72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (,11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising ,88% and ,89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (,0.2% and ,0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.

Spongeā€specific clusters revisited: a comprehensive phylogeny of spongeā€associated microorganisms

Environmental Microbiology, 2012

rRNA-based studies have identified putative 'spongespecific' microbes that are apparently absent from seawater and other (non-sponge) marine habitats. With more than 7500 sponge-derived rRNA sequences (from clone, isolate and denaturing gradient gel electrophoresis data) now publicly available, we sought to determine whether the current notion of sponge-specific sequence clusters remains valid. Comprehensive phylogenetic analyses were performed on the 7546 sponge-derived 16S and 18S rRNA sequences that were publicly available in early 2010. Overall, 27% of all sequences fell into monophyletic, sponge-specific sequence clusters. Such clusters were particularly well represented among the Chloroflexi, Cyanobacteria, 'Poribacteria', Betaproteobacteria and Acidobacteria, and in total were identified in at least 14 bacterial phyla, as well as the Archaea and fungi. The largest sponge-specific cluster, representing the cyanobacterium 'Synechococcus spongiarum', contained 245 sequences from 40 sponge species. These results strongly support the existence of sponge-specific microbes and provide a suitable framework for future studies of rare and abundant sponge symbionts, both of which can now be studied using next-generation sequencing technologies.

Evidence of a Putative Deep Sea Specific Microbiome in Marine Sponges

PLoS ONE, 2014

The microbiota of four individual deep water sponges, Lissodendoryx diversichela, Poecillastra compressa, Inflatella pellicula, and Stelletta normani, together with surrounding seawater were analysed by pyrosequencing of a region of the 16S rRNA gene common to Bacteria and Archaea. Due to sampling constraints at depths below 700 m duplicate samples were not collected. The microbial communities of L. diversichela, P. compressa and I. pellicula were typical of low microbial abundance (LMA) sponges while S. normani had a community more typical of high microbial abundance (HMA) sponges. Analysis of the deep sea sponge microbiota revealed that the three LMA-like sponges shared a set of abundant OTUs that were distinct from those associated with sponges from shallow waters. Comparison of the pyrosequencing data with that from shallow water sponges revealed that the microbial communities of all sponges analysed have similar archaeal populations but that the bacterial populations of the deep sea sponges were distinct. Further analysis of the common and abundant OTUs from the three LMA-like sponges placed them within the groups of ammonia oxidising Archaea (Thaumarchaeota) and sulphur oxidising c-Proteobacteria (Chromatiales). Reads from these two groups made up over 70% of all 16S rRNA genes detected from the three LMA-like sponge samples, providing evidence of a putative common microbial assemblage associated with deep sea LMA sponges.

Host Specificity for Bacterial, Archaeal and Fungal Communities Determined for High- and Low-Microbial Abundance Sponge Species in Two Genera

Frontiers in Microbiology, 2017

Sponges are engaged in intimate symbioses with a diversity of microorganisms from all three domains of life, namely Bacteria, Archaea and Eukarya. Sponges have been well studied and categorized for their bacterial communities, some displaying a high microbial abundance (HMA), while others show low microbial abundance (LMA). However, the associated Archaea and Eukarya have remained relatively understudied. We assessed the bacterial, archaeal and eukaryotic diversities in the LMA sponge species Dysidea avara and Dysidea etheria by deep amplicon sequencing, and compared the results to those in the HMA sponges Aplysina aerophoba and Aplysina cauliformis. D. avara and A. aerophoba are sympatric in the Mediterranean Sea, while D. etheria and A. cauliformis are sympatric in the Caribbean Sea. The bacterial communities followed a host-specific pattern, with host species identity explaining most of the variation among samples. We identified OTUs shared by the Aplysina species that support a more ancient association of these microbes, before the split of the two species studied here. These shared OTUs are suitable targets for future studies of the microbial traits that mediate interactions with their hosts. Even though the archaeal communities were not as rich as the bacterial ones, we found a remarkable diversification and specificity of OTUs of the family Cenarchaeaceae and the genus Nitrosopumilus in all four sponge species studied. Similarly, the differences in fungal communities were driven by sponge identity. The structures of the communities of small eukaryotes such as dinophytes and ciliophores (alveolates), and stramenopiles, could not be explained by either sponge host, sponge genus or geographic location. Our analyses suggest that the host specificity that was previously described for sponge bacterial communities also extends to the archaeal and fungal communities, but not to other microbial eukaryotes.

Microbial Diversity of Marine Sponges

Sponges (Porifera), 2003

16S rDNA library construction revealed a uniform microbial community in sponges that were collected from different oceans. Altogether 14 monophyletic, sponge-specific sequence clusters were identified that belong to at least seven different bacterial divisions. By definition, the sequences of each cluster are more closely related to each other than to a sequence from non-sponge sources. These monophyletic clusters comprise 70 % of all publicly available, sponge-derived 16S rDNA sequences reflecting the generality of the observed phenomenon. This shared microbial fraction represents the 'smallest common denominator' of the sponges investigated in this study. Bacteria that are exclusively found in certain host species or that occur only transiently would have been missed. A picture emerges where sponges can be viewed as highly concentrated reservoirs of so far uncultured, elusive and possibly evolutionarily ancient marine microorganisms.

Compositional and Quantitative Insights Into Bacterial and Archaeal Communities of South Pacific Deep-Sea Sponges (Demospongiae and Hexactinellida)

Frontiers in Microbiology

In the present study, we profiled bacterial and archaeal communities from 13 phylogenetically diverse deep-sea sponge species (Demospongiae and Hexactinellida) from the South Pacific by 16S rRNA-gene amplicon sequencing. Additionally, the associated bacteria and archaea were quantified by real-time qPCR. Our results show that bacterial communities from the deep-sea sponges are mostly host-species specific similar to what has been observed for shallow-water demosponges. The archaeal deep-sea sponge community structures are different from the bacterial community structures in that they are almost completely dominated by a single family, which are the ammonia-oxidizing genera within the Nitrosopumilaceae. Remarkably, the archaeal communities are mostly specific to individual sponges (rather than sponge-species), and this observation applies to both hexactinellids and demosponges. Finally, archaeal 16s gene numbers, as detected by quantitative real-time PCR, were up to three orders of magnitude higher than in shallow-water sponges, highlighting the importance of the archaea for deep-sea sponges in general.

Host-specific microbial communities in three sympatric North Sea sponges

2014

The establishment of next-generation technology sequencing has deepened our knowledge of marine sponge-associated microbiota with the identification of at least 32 phyla of Bacteria and Archaea from a large number of sponge species. In this study, we assessed the diversity of the microbial communities hosted by three sympatric sponges living in a semi-enclosed North Sea environment using pyrosequencing of bacterial and archaeal 16S ribosomal RNA gene fragments. The three sponges harbor species-specific communities each dominated by a different class of Proteobacteria. An a-proteobacterial Rhodobacter-like phylotype was confirmed as the predominant symbiont of Halichondria panicea. The microbial communities of Haliclona xena and H. oculata are described for the first time in this study and are dominated by Gammaproteobacteria and Betaproteobacteria, respectively. Several common phylotypes belonging to Chlamydiae, TM6, Actinobacteria, and Betaproteobacteria were detected in all sponge samples. A number of phylotypes of the phylum Chlamydiae were present at an unprecedentedly high relative abundance of up to 14.4 AE 1.4% of the total reads, which suggests an important ecological role in North Sea sponges. These Chlamydiae-affiliated operational taxonomic units may represent novel lineages at least at the genus level as they are only 86-92% similar to known sequences.