Multilocus genotyping of Giardia duodenalis isolates from red deer (Cervus elaphus) and roe deer (Capreolus capreolus) from Poland (original) (raw)

A Novel Giardia duodenalis Assemblage A Subtype in Fallow Deer

Journal of Parasitology, 2007

The molecular identification of species and genotypes of Giardia spp. infecting wild mammals represents the most reliable tool to understand the role played by these animals as reservoirs of cysts infectious for human and other animals. Of 139 fecal samples collected from fallow deer (Dama dama L.) hunted in a Natural Reserve of northern Italy, the prevalence of Giardia sp. was 11.5% (16 of 139 animals), and it was higher in fawns than in older animals. Fragments of the ␤giardin and triose phosphate isomerase (tpi) genes were successfully polymerase chain reaction amplified and sequenced from 8 isolates. No sequence variation was observed between isolates at the 2 genetic loci. Sequence and phylogenetic analyses identified a Giardia duodenalis subtype that clusters with assemblage A isolates and that shows homologies of 98 and 97% at the ␤-giardin and tpi loci, respectively, compared with the A1 subtype. Because the G. duodenalis subtype found in fecal samples of fallow deer has never been detected previously, its role as a pathogen for humans and domestic animals is unknown, but, considering its genetic distinctiveness, it is likely to be low.

Multilocus genotyping of Giardia duodenalis from livestock

2007

Giardia duodenalis (syn. G. intestinalis, G. lamblia) is an important zoonotic parasite infecting livestock (including pigs) through ingesting cysts in contaminated food or water. This parasite has been classified into eight different genetic assemblages, A to H. Here, we examined the individual-level prevalence of G. duodenalis in domestic pig farms and confirmed host specificity by genotype comparisons. Samples were collected from southern and central Korea, between May 2017 and January 2019. DNA directly extracted from 745 pig fecal specimens were tested by PCR for G. duodenalis small subunit ribosomal RNA (ssu rRNA), glutamate dehydrogenase (gdh), and βgiardin gene sequences. Based on ssu rRNA PCR, 110 (14.8%) were positive for G. duodenalis. Infection risk was the highest in the fattener group (31/139, 22.3%) and during the autumn season (52/245, 21.2%: p < .001). No statistically significant differences in risk for infection were observed between fecal types (normal versus diarrheal). Fifty ssu rRNA samples, three gdh samples, and five β-giardin samples were successfully sequenced and genotyped. Ssu rRNA assemblage sequence analysis identified E (40.0%, 20/50), D (34.0%, 17/50), C (24.0%, 12/50), and A (2.0%, 1/50). The gdh locus identified three samples as assemblage E, and the β-giardin locus identified four samples as assemblage E and one as assemblage C. Assemblage A sequences obtained (ssu rRNA; MK430919) had 100% identity with Giardia sequences isolated from a Korean individual (AJ293301), indicating the potential of zoonotic transmission. Continuous management and monitoring for prevention of transmission and protection of animal and human health are essential.

Multilocus genotyping of Giardia duodenalis isolates from calves in Oromia Special Zone, Central Ethiopia

Giardia duodenalis is a widespread protozoan parasite that infects human and other mammals. Assessing the zoonotic transmission of the infection requires molecular characterization as there is considerable genetic variation within the species. This study was conducted to identify assemblages of Giardia duodenalis in dairy calves; and to assess the potential role of cattle isolates in zoonotic transmission in central Ethiopia. A total of 449 fecal samples were collected and screened using microscopy and PCR targeting the small-subunit (ssu) rRNA, triose phosphate isomerase (tpi), β-giardin (bg) and glutamate dehydrogenase (gdh) genes. The overall prevalence of Giardia duodenalis in dairy calves was found to be 9.6% (43/449). The prevalence of infection based on sex, age and breed difference was statistically not significant (p N 0.05). Genotyping results revealed the presence of assemblage E and assemblage A (AI). The genotypic frequency reported was 95.3% (41/43) for assemblage E and 4.7% (2/43) for assemblage A. There was one mixed infection with assemblages AI and E. Sequence analyses showed the existence of 10 genotypes within assemblage E. One genotype that showed novel nucleotide substitution was identified at the ssu rRNA locus. The other 9 genotypes, 3 at each locus, were identified at the tpi, the bg and the gdh loci with two of the gdh genotypes were novel. Findings of the current study indicate the occurrence of the livestock-specific assemblage E and the potentially zoonotic assemblage A, with the former being more prevalent. Although the zoonotic assemblage was less prevalent, there is a possibility of zoonotic human infection as AI is reported from both animals and humans.

Multilocus Genotyping of Giardia duodenalis Occurring in Korean Native Calves

Veterinary Sciences, 2021

Giardia duodenalis is one of the most widely occurring zoonotic protozoan parasites causing diarrheal disease in calves. This study aimed to investigate the prevalence of G. duodenalis in Korean native calves and elucidate the causal factors associated with giardiasis in these animals. We investigated the sequences of three genes (ssu, bg, and gdh) of G. duodenalis in fecal samples collected from 792 Korean native calves during 2019–2020. Data were analyzed with regard to age, sex, sampling season, and the fecal sample type (based on its physical characteristics). The samples were screened for the three genes mentioned above, and 44 samples (5.6%) were G. duodenalis-positive. Polymerase chain reaction results showed a significantly higher prevalence of the infection in calves aged ≥1 month and in those with watery diarrhea in spring season. Screening for the gene sequences ssu (87.5%), bg (96.2%), and gdh (96.7%) revealed that most of the G. duodenalis-positive samples belonged to a...

GIARDIA DUODENALIS CYSTS ISOLATED FROM WILD MOOSE AND REINDEER IN NORWAY: GENETIC CHARACTERIZATION BY PCR-RFLP AND SEQUENCE ANALYSIS AT TWO GENES

Journal of Wildlife Diseases, 2007

There are few genotyping studies of Giardia duodenalis isolates from cervid hosts, although a previous study suggested that cervids may be a source of infection for humans and cattle. Giardia duodenalis isolates collected from wild moose (Alces alces) and reindeer (Rangifer tarandus) in Norway during 2002 and 2003 were characterized by polymerase chain reactionrestriction fraction length polymorphism (PCR-RFLP) at the b-giardin gene, and sequence analysis at both the b-giardin and glutamate dehydrogenase (gdh) genes. All results suggested that these isolates (n525) belonged to assemblage A. Three different restriction patterns were obtained with PCR-RFLP, one of which has previously been associated with assemblage A. At the b-giardin gene, sequences from six reindeer isolates and one moose isolate were identical to a previously published assemblage A sequence from G. duodenalis cysts isolated from dairy calves. The other 10 moose isolates could be divided into five groups, with between two and 14 single nucleotide polymorphisms (SNPs) from the published genotype A2. At the gdh gene, three different sequences were obtained, differing from each other by between one and 15 SNPs and which have all been previously published as genotype A1, but with different specific hosts. Grouping of the isolates based on the sequences from both genes gave complex results; whereas all the G. duodenalis isolates from reindeer grouped together, two moose isolates, which had identical sequences at the b-giardin gene, had sequences that differed from each other by 15 SNPs at the gdh gene. The results of these studies, together with the large Norwegian populations of these cervids and the amount of fecal matter they produce, indicate that moose and reindeer may be significant reservoirs of G. duodenalis infection in Norway, which may be of importance to veterinary and public health.