Generative deep learning furthers the understanding of local distributions of fat and muscle on body shape and health using 3D surface scans (original) (raw)

Deep learning-based quantification of abdominal fat on magnetic resonance images

PloS one, 2018

Obesity is increasingly prevalent and associated with increased risk of developing type 2 diabetes, cardiovascular diseases, and cancer. Magnetic resonance imaging (MRI) is an accurate method for determination of body fat volume and distribution. However, quantifying body fat from numerous MRI slices is tedious and time-consuming. Here we developed a deep learning-based method for measuring visceral and subcutaneous fat in the abdominal region of mice. Congenic mice only differ from C57BL/6 (B6) Apoe knockout (Apoe-/-) mice in chromosome 9 that is replaced by C3H/HeJ genome. Male congenic mice had lighter body weight than B6-Apoe-/- mice after being fed 14 weeks of Western diet. Axial and coronal T1-weighted sequencing at 1-mm-thickness and 1-mm-gap was acquired with a 7T Bruker ClinScan scanner. A deep learning approach was developed for segmenting visceral and subcutaneous fat based on the U-net architecture made publicly available through the open-source ANTsRNet library-a growin...

Quantification of abdominal fat from computed tomography using deep learning and its association with electronic health records in an academic biobank

Journal of the American Medical Informatics Association, 2021

Objective The objective was to develop a fully automated algorithm for abdominal fat segmentation and to deploy this method at scale in an academic biobank. Materials and Methods We built a fully automated image curation and labeling technique using deep learning and distributive computing to identify subcutaneous and visceral abdominal fat compartments from 52,844 computed tomography scans in 13,502 patients in the Penn Medicine Biobank (PMBB). A classification network identified the inferior and superior borders of the abdomen, and a segmentation network differentiated visceral and subcutaneous fat. Following technical evaluation of our method, we conducted studies to validate known relationships with visceral and subcutaneous fat. Results When compared with 100 manually annotated cases, the classification network was on average within one 5-mm slice for both the superior (0.4 ± 1.1 slice) and inferior (0.4 ± 0.6 slice) borders. The segmentation network also demonstrated excellent...

Deep Learning for Quantification of Epicardial and Thoracic Adipose Tissue from Non-Contrast CT

IEEE transactions on medical imaging, 2018

Epicardial adipose tissue (EAT) is a visceral fat deposit related to coronary artery disease. Fully automated quantification of EAT volume in clinical routine could be a timesaving and reliable tool for cardiovascular risk assessment. We propose a new fully automated deep learning framework for EAT and thoracic adipose tissue (TAT) quantification from non-contrast coronary artery calcium CT scans. A first multi-task convolutional neural network (ConvNet) is used to determine heart limits and perform segmentation of heart and adipose tissues. A second ConvNet, combined with a statistical shape model (SSM), allows for pericardium detection. EAT and TAT segmentations are then obtained from outputs of both ConvNets. We evaluate the performance of the method on CT datasets from 250 asymptomatic individuals. Strong agreement between automatic and expert manual quantification is obtained for both EAT and TAT with median Dice score coefficients (DSC) of 0.823 (inter-quartile range (IQR): 0....

Development of a fully automatic deep learning system for L3 selection and body composition assessment on computed tomography

Scientific Reports

As sarcopenia research has been gaining emphasis, the need for quantification of abdominal muscle on computed tomography (CT) is increasing. Thus, a fully automated system to select L3 slice and segment muscle in an end-to-end manner is demanded. We aimed to develop a deep learning model (DLM) to select the L3 slice with consideration of anatomic variations and to segment cross-sectional areas (CSAs) of abdominal muscle and fat. Our DLM, named L3SEG-net, was composed of a YOLOv3-based algorithm for selecting the L3 slice and a fully convolutional network (FCN)-based algorithm for segmentation. The YOLOv3-based algorithm was developed via supervised learning using a training dataset (n = 922), and the FCN-based algorithm was transferred from prior work. Our L3SEG-net was validated with internal (n = 496) and external validation (n = 586) datasets. Ground truth L3 level CT slice and anatomic variation were identified by a board-certified radiologist. L3 slice selection accuracy was ev...

Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat–water decomposition MRI

Insights into Imaging, 2020

Background Time-efficient and accurate whole volume thigh muscle segmentation is a major challenge in moving from qualitative assessment of thigh muscle MRI to more quantitative methods. This study developed an automated whole thigh muscle segmentation method using deep learning for reproducible fat fraction quantification on fat–water decomposition MRI. Results This study was performed using a public reference database (Dataset 1, 25 scans) and a local clinical dataset (Dataset 2, 21 scans). A U-net was trained using 23 scans (16 from Dataset 1, seven from Dataset 2) to automatically segment four functional muscle groups: quadriceps femoris, sartorius, gracilis and hamstring. The segmentation accuracy was evaluated on an independent testing set (3 × 3 repeated scans in Dataset 1 and four scans in Dataset 2). The average Dice coefficients between manual and automated segmentation were > 0.85. The average percent difference (absolute) in volume was 7.57%, and the average differenc...

A novel deep learning method for large-scale analysis of bone marrow adiposity using UK Biobank Dixon MRI data

ABSTRACTOBJECTIVESBone marrow adipose tissue (BMAT) represents >10% of total fat mass in healthy humans and further increases in diverse clinical conditions, but the impact of BMAT on human health and disease remains poorly understood. Magnetic resonance imaging (MRI) allows non-invasive measurement of the bone marrow fat fraction (BMFF), and human MRI studies have begun identifying associations between BMFF and skeletal or metabolic diseases. However, such studies have so far been limited to smaller cohorts: analysis of BMFF on a larger, population scale therefore has huge potential to reveal fundamental new knowledge of BMAT’s formation and pathophysiological functions. The UK Biobank (UKBB) is undertaking whole-body MRI of 100,000 participants, providing the ideal opportunity for such advances.MATERIALS AND METHODSHerein, we developed a deep learning pipeline for high-throughput BMFF analysis of these UKBB MRI data. Automatic bone marrow segmentation was achieved by designing ...

Fully-Automated Analysis of Body Composition from CT in Cancer Patients Using Convolutional Neural Networks

Lecture Notes in Computer Science, 2018

The amounts of muscle and fat in a person's body, known as body composition, are correlated with cancer risks, cancer survival, and cardiovascular risk. The current gold standard for measuring body composition requires time-consuming manual segmentation of CT images by an expert reader. In this work, we describe a two-step process to fully automate the analysis of CT body composition using a DenseNet to select the CT slice and U-Net to perform segmentation. We train and test our methods on independent cohorts. Our results show Dice scores (0.95-0.98) and correlation coefficients (R=0.99) that are favorable compared to human readers. These results suggest that fully automated body composition analysis is feasible, which could enable both clinical use and large-scale population studies.