Nonlinear Outcome of Coagulation Instability in Protoplanetary Disks II: Dust Ring Formation Mediated by Backreaction and Fragmentation (original) (raw)
Related papers
Planetesimal formation by the gravitational instability of dust ring structures
arXiv (Cornell University), 2022
We investigate the gravitational instability (GI) of dust-ring structures and the formation of planetesimals by their gravitational collapse. The normalized dispersion relation of a self-gravitating ring structure includes two parameters that are related to its width and line mass (the mass per unit length). We survey these parameters and calculate the growth rate and wavenumber. Additionally, we investigate the planetesimal formation by growth of the GI of the ring that is formed by the growth of the secular GI of the protoplanetary disk. We adopt a massive, dust rich disk as a disk model. We find the range of radii for the fragmentation by the ring GI as a function of the width of the ring. The innermost radius for the ring GI is smaller for the smaller ring width. We also determine the range of the initial planetesimal mass resulting from the fragmentation of the ring GI. Our results indicate that the planetesimal mass can be as large as 10 28 g at its birth after the fragmentation. It can be as low as about 10 25 g if the ring width is 0.1% of the ring radius and the lower limit increases with the ring width. Furthermore, we obtain approximate formulas for the upper and lower limits of the planetesimal mass. We predict that the planetesimals formed by the ring GI have prograde rotations because of the Coriolis force acting on the contracting dust. This is consistent with the fact that many trans-Neptunian binaries exhibit prograde rotation.
The instability in protoplanetary disks due to gas-dust friction and self-gravity of gas and dust is investigated by linear analysis. For conditions typical of protoplanetaly disks, the instability grows, even in gravitationally stable disks, on a timescale of order 10 4−5 yr at a radius of order 100AU. If we ignore the dynamical feedback from dust grains in the gas equation of motion, the instability reduces to the so-called "secular gravitational instability", that was investigated previously as the instability of dust in a fixed background gas flow. In this work, we solve the equation of motion for both gas and dust consistently and find that long-wavelength perturbations are stable, in contrast to the secular gravitational instability in the simplified treatment. The instability is expected to form ring structures in protoplanetary disks. The width of the ring formed at a radius of 100 AU is a few tens of AU. Therefore, the instability is a candidate for the formation mechanism of observed ring-like structures in disks. Another aspect of the instability is the accumulation of dust grains, hence the instability may play an important role in the formation of planetesimals, rocky protoplanets, and cores of gas giants located at radii ∼100 AU. If these objects survive the dispersal of the gaseous component of the disk, they may be the origin of debris disks.
The Astrophysical Journal
Our previous linear analysis presents a new instability driven by dust coagulation in protoplanetary disks. The coagulation instability has the potential to concentrate dust grains into rings and assist dust coagulation and planetesimal formation. In this series of papers, we perform numerical simulations and investigate the nonlinear outcome of coagulation instability. In this paper (Paper I), we first conduct local simulations to demonstrate the existence of coagulation instability. Linear growth observed in the simulations is in good agreement with the previous linear analysis. We next conduct radially global simulations to demonstrate that coagulation instability develops during the inside-out disk evolution owing to dust growth. To isolate the various effects on dust concentration and growth, we neglect the effects of back-reaction to a gas disk and dust fragmentation in Paper I. This simplified simulation shows that neither back-reaction nor fragmentation is a prerequisite for...
2014
The instability in protoplanetary disks due to gas-dust friction and self-gravity of gas and dust is investigated by linear analysis. In the case where the dust to gas ratio is enhanced and turbulence is week, the instability grows, even in gravitationally stable disks, on a timescale of order 10 4−5 yr at a radius of order 100AU. If we ignore the dynamical feedback from dust grains in the gas equation of motion, the instability reduces to the so-called "secular gravitational instability", which was investigated previously as an instability of dust in a fixed background gas flow. In this work, we solve the equations of motion for both gas and dust consistently and find that long-wavelength perturbations are stable, in contrast to the secular gravitational instability in the simplified treatment. This may indicate that we should not neglect small terms in equation of motion if the growth rate is small. The instability is expected to form ring structures in protoplanetary disks. The width of the ring formed at a radius of 100 AU is a few tens of AU. Therefore, the instability is a candidate for the formation mechanism of observed ring-like structures in disks. Another aspect of the instability is the accumulation of dust grains, and hence the instability may play an important role in the formation of planetesimals, rocky protoplanets, and cores of gas giants located at radii ∼100 AU. If these objects survive the dispersal of the gaseous component of the disk, they may be the origin of debris disks.
Dust Resurgence in Protoplanetary Disks Due to Planetesimal–Planet Interactions
The astrophysical journal, 2022
Observational data on the dust content of circumstellar disks show that the median dust content in disks around pre-main sequence stars in nearby star forming regions seem to increase from ∼1 Myr to ∼2 Myr, and then decline with time. This behaviour challenges the models where the small dust grains steadily decline by accumulating into larger bodies and drifting inwards on a short timescale (≤1 Myr). In this Letter we explore the possibility to reconcile this discrepancy in the framework of a model where the early formation of planets dynamically stirs the nearby planetesimals and causes high energy impacts between them, resulting in the production of second-generation dust. We show that the observed dust evolution can be naturally explained by this process within a suite of representative disk-planet architectures.
2010
We investigate the formation process of planetesimals from the dust layer by the gravitational instability in the gas disk using local N-body simulations. The gas is modeled as a background laminar flow. We study the formation process of planetesimals and its dependence on the strength of the gas drag. Our simulation results show that the formation process is divided into three stages qualitatively: the formation of wake-like density structures, the creation of planetesimal seeds, and their collisional growth. The linear analysis of the dissipative gravitational instability shows that the dust layer is secularly unstable although Toomre's Q value is larger than unity. However, in the initial stage, the growth time of the gravitational instability is longer than that of the dust sedimentation and the decrease in the velocity dispersion. Thus, the velocity dispersion decreases and the disk shrinks vertically. As the velocity dispersion becomes sufficiently small, the gravitational...
N ‐Body Simulation of Planetesimal Formation through Gravitational Instability of a Dust Layer
The Astrophysical Journal, 2007
We performed N-body simulations of a dust layer without a gas component and examined the formation process of planetesimals. We found that the formation process of planetesimals can be divided into three stages: the formation of non-axisymmetric wake-like structures, the creation of aggregates, and the collisional growth of the aggregates. Finally, a few large aggregates and many small aggregates are formed. The mass of the largest aggregate is larger than the mass predicted by the linear perturbation theory. We examined the dependence of system parameters on the planetesimal formation. We found that the mass of the largest aggregates increase as the size of the computational domain increases. However the ratio of the aggregate mass to the total mass M aggr /M total is almost constant 0.8 − 0.9. The mass of the largest aggregate increases with the optical depth and the Hill radius of particles.
Ring formation and dust dynamics in wind-driven protoplanetary discs: global simulations
Astronomy & Astrophysics, 2020
Large-scale vertical magnetic fields are believed to play a key role in the evolution of protoplanetary discs. Associated with non-ideal effects, such as ambipolar diffusion, they are known to launch a wind that could drive accretion in the outer part of the disc (R > 1 AU). They also potentially lead to self-organisation of the disc into large-scale axisymmetric structures, similar to the rings recently imaged by sub-millimetre or near-infrared instruments (ALMA and SPHERE). The aim of this paper is to investigate the mechanism behind the formation of these gaseous rings, but also to understand the dust dynamics and its emission in discs threaded by a large-scale magnetic field. To this end, we performed global magneto-hydrodynamics (MHD) axisymmetric simulations with ambipolar diffusion using a modified version of the PLUTO code. We explored different magnetisations with the midplane β parameter ranging from 105 to 103 and included dust grains -treated in the fluid approximati...
Non-linear development of secular gravitational instability in protoplanetary disks
Publications of the Astronomical Society of Japan
We perform non-linear simulation of secular gravitational instability (GI) in protoplanetary disks, which has been proposed as a mechanism of planetesimal and multiple ring formation. Since the timescale of the growth of the secular GI is much longer than the Keplerian rotation period, we develop a new numerical scheme for a long-term calculation utilizing the concept of symplectic integration. With our new scheme, we first investigate the non-linear development of the secular GI in a disk without a pressure gradient in the initial state. We find that the surface density of dust increases by more than a factor of 100 while that of gas does not increase even by a factor of 2, which results in the formation of dust-dominated rings. A line mass of the dust ring tends to be very close to the critical line mass of a self-gravitating isothermal filament. Our results indicate that the non-linear growth of the secular GI provides a powerful mechanism to concentrate the dust. We also find that the dust ring formed via the non-linear growth of the secular GI migrates inward with a low velocity, which is driven by the self-gravity of the ring. We give a semi-analytical expression for the inward migration speed of the dusty ring.