CFD Investigation of Flame and Pressure Wave Propagation through Variable Concentration Methane-Air Mixtures in a Tube Closed at One End (original) (raw)

In fl uences of the Initial Ignition Energy on Methane Explosion in a Flame De fl agration Tube

2017

It was observed that the initial ignition energy influences the flame deflagration characteristics of methane explosions. This distinct behavior has been noticed by a number of scholars, and in our laboratory scale explosion chamber recently. However, the flame traveling behavior has not been adequately clarified in industrial scale flame deflagration tube (FDT). This experimental work investigates methane flame deflagration and varied initial ignition in a large scale FDT (30 m long) facilitated at University of Newcastle, Australia, to comprehensively investigate methane flame deflagration behavior. The initial ignition energy was delivered by three alternative chemical ignitors’ energies, which were 1, 5, and 10 kJ. The results of the study revealed the notable influences of the initial ignition energies on the flame deflagrations, over pressure rises, and pressure wave velocities along the FDT. When the initial ignition energy was increased from 1 kJ to 10 kJ, the maximum over p...

Experimental and Numerical Study of Ignition and Flame Propagation for Methane–Air Mixtures in Small Vessels

Processes

Methane is one of the most common gaseous fuels that also exist in nature as the main part of the natural gas, the flammable part of biogas or as part of the reaction products from biomass pyrolysis. In this respect, the biogas and biomass installations are always subjected to explosion hazards due to methane. Simple methods for evaluating the explosion hazards are of great importance, at least in the preliminary stage. The paper describes such a method based on an elementary analysis of the cubic law of pressure rise during the early stages of flame propagation in a symmetrical cylindrical vessel of small volume (0.17 L). The pressure–time curves for lean, stoichiometric and rich methane–air mixtures were recorded and analyzed. From the early stages of pressure–time history, when the pressure increase is equal to or less than the initial pressure, normal burning velocities were evaluated and discussed. Qualitative experiments were performed in the presence of a radioactive source o...