Phenotypic and genotypic characterization of Shiga toxin-producing Escherichia coli strains recovered from bovine carcasses in Uruguay (original) (raw)

Abstract

Introduction: Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that cause food-borne diseases in humans. Cattle and derived foodstuffs play a known role as reservoir and vehicles, respectively. In Uruguay, information about the characteristics of circulating STEC in meat productive chain is scarce. The aim was to characterize STEC strains recovered from 800 bovine carcasses of different slaughterhouses. To characterize STEC strains we use classical microbiological procedures, Whole Genome Sequencing (WGS) and FAO/WHO risk criteria. Results: We analyzed 39 STEC isolated from 20 establishments. They belonged to 21 different O-groups and 13 different H-types. Only one O157:H7 strain was characterized and the serotypes O130:H11(6), O174:H28(5), and O22:H8(5) prevailed. One strain showed resistance in vitro to tetracycline and genes for doxycycline, sulfonamide, streptomycin and fosfomycin resistance were detected. Thirty-three strains (84.6%) carried the subtypes Stx2a, Stx2c, or Stx2d. The gene eae was detected only in two strains (O157:H7, O182:H25). The most prevalent virulence genes found were lpfA (n = 38), ompA (n = 39), ompT (n = 39), iss (n = 38), and terC (n = 39). Within the set of STEC analyzed, the majority (81.5%) belonged to FAO/WHO's risk classification levels 4 and 5 (lower risk). Besides, we detected STEC serotypes O22:H8, O113:H21, O130:H11, and O174:H21 belonged to level risk 2 associate with diarrhea, hemorrhagic colitis or Hemolytic-Uremic Syndrome (HUS). The only O157:H7 strain analyzed belonged to ST11. Thirty-eight isolates belonged to the Clermont type B1, while the O157:H7 was classified as E. Discussion: The analyzed STEC showed high genomic diversity and harbor several genetic determinants associated with virulence, underlining the important role of WGS for a complete typing. In this set we did not detect non-O157 STEC previously isolated from local HUS cases. However, when interpreting this findings, the low number of isolates analyzed and some methodological limitations must be taken into account. Obtained data suggest that cattle constitute a local reservoir of non-O157 serotypes associated with severe diseases. Other studies are needed to assess the role of the local meat chain in the spread of STEC, especially those associated with severe diseases in humans.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (76)

  1. Abdissa, R., Haile, W., Fite, A. T., Beyi, A. F., Agga, G. E., Edao, B. M., et al. (2017). Prevalence of Escherichia coli O157:H7 in beef cattle at slaughter and beef carcasses at retail shops in Ethiopia. BMC Infect. Dis. 17:277. doi: 10.1186/s12879-017-2372-2
  2. Alonso, M. Z., Krüger, A., Sanz, M. E., Padola, N. L., and Lucchesi, P. M. A. (2016).
  3. Serotypes, virulence profiles and stx subtypes of Shigatoxigenic Escherichia coli isolated from chicken derived products. Rev. Argent. Microbiol. 48, 325-328. doi: 10.1016/j.ram.2016.04.009
  4. Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (Accessed December 12, 2022).
  5. Bai, X., Zhao, A., Lan, R., Xin, Y., Xie, H., Meng, Q., et al. (2013). Shiga toxin- producing Escherichia coli in yaks (Bos grunniens) from the Qinghai-Tibetan plateau, China. PLoS ONE 8:e65537. doi: 10.1371/journal.pone.0065537
  6. Beghain, J., Bridier-Nahmias, A., Le Nagard, H., Denamur, E., and Clermont, O.
  7. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb. Genom. 4:e000192. doi: 10.1099/mgen.0.000192 BEN 611-SE29 -Boletín epidemiológico nacional N611 SE29 (2022). https://bancos.salud. gob.ar/sites/default/files/2022-07/BEN-611-SE-29.pdf (Accessed December 12, 2022). Bettelheim, K. A., and Goldwater, P. N. (2014). Serotypes of non-O157 Shigatoxigenic Escherichia coli (STEC). Adv. Microbiol. 4, 377-389. doi: 10.4236/aim.2014.47045 BIV 560 -Boletín integrado de Vigilancia N560 SE30 (2021). Available at: https:// bancos.salud.gob.ar/sites/default/files/2021-09/biv_560_se_30_con_informe_SUH.pdf (Accessed December 12, 2022).
  8. Bortolaia, V., Kaas, R. S., Ruppe, E., Roberts, M. C., Schwarz, S., Cattoir, V., et al. (2020). Res finder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75, 3491-3500. doi: 10.1093/jac/dkaa345
  9. Brusa, V., Costa, M., Padola, N. L., Etcheverría, A., Sampedro, F., Fernandez, P. S., et al. (2020). Quantitative risk assessment of haemolytic uremic syndrome associated with beef consumption in Argentina. PLoS One 15:e0242317. doi: 10.1371/journal. pone.0242317
  10. Brusa, V., Restovich, V., Galli, L., Teitelbaum, D., Signorini, M., Brasesco, H., et al. (2017). Isolation and characterization of non-O157 Shiga toxin-producing Escherichia coli from beef carcasses, cuts and trimmings of abattoirs in Argentina. PLoS One 12:e0183248. doi: 10.1371/journal.pone.0183248 10.3389/fmicb.2023.1130170
  11. Frontiers in Microbiology 11 frontiersin.org
  12. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi: 10.1186/1471-2105-10-421
  13. Carney, E., O'Brien, S. B., Sheridan, J. J., McDowell, D. A., Blair, I. S., and Duffy, G. (2006). Prevalence and level of Escherichia coli O157 on beef trimmings, carcasses and boned head meat at a beef slaughter plant. Food Microbiol. 23, 52-59. doi: 10.1016/j. fm.2004.12.001
  14. Carter, M. Q., Quinones, B., He, X., Zhong, W., Louie, J. W., Lee, B. G., et al. (2016). An environmental Shiga toxin-producing Escherichia coli O145 clonal population exhibits high-level phenotypic variation that includes virulence traits. Appl. Environ. Microbiol. 82, 1090-1101. doi: 10.1128/AEM.03172-15
  15. Castro, V. S., Ortega Polo, R., Figueiredo, E. E. D. S., Bumunange, E. W., McAllister, T., King, R., et al. (2021). Inconsistent PCR detection of Shiga toxin-producing Escherichia coli: insights from whole genome sequence analyses. PLoS One 16:e0257168. doi: 10.1371/journal.pone.0257168
  16. Clermont, O., Dixit, O. V. A., Vangchhia, B., Condamine, B., Dion, S., Bridier-Nahmias, A., et al. (2019). Characterization and rapid identification of phylogroup G in Escherichia coli, a lineage with high virulence and antibiotic resistance potential. Environ. Microbiol. 21, 3107-3117. doi: 10.1111/1462-2920.14713 Clinical and Laboratory Standards Institute (2019). Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100. Table 2A, Enterobacteriaceae M02 and M07.
  17. Commereuc, M., Weill, F.-X., Loukiadis, E., Gouali, M., Gleizal, A., Kormann, R., et al. (2016). Recurrent hemolytic and uremic syndrome induced by Escherichia coli. Medicine 95:e2050. doi: 10.1097/MD.0000000000002050
  18. Coura, F. M., de Araújo Diniz, S., Mussi, J. M. S., Silva, M. X., Lage, A. P., and Heinemann, M. B. (2017). Characterization of virulence factors and phylogenetic group determination of Escherichia coli isolated from diarrheic and non-diarrheic calves from Brazil. Folia Microbiol. 62, 139-144. doi: 10.1007/s12223-016-0480-9
  19. Croxen, M. A., Law, R. J., Scholz, R., Keeney, K. M., Wlodarska, M., and Finlay, B. B. (2013). Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 26, 822-880. doi: 10.1128/CMR.00022-13 EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control) (2019). The European Union one health 2018 Zoonoses report. EFSA J. 17:e05926. doi: 10.2903/j.efsa.2019.5926 EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control) (2022). The European Union one health 2021 Zoonoses report. EFSA J. 20:e07666. doi: 10.2903/j.efsa.2022.7666 FAO and WHO. (2019). Attributing Illness Caused by Shiga Toxin-Producing Escherichia coli (STEC) to Specific Foods. Microbiological Risk Assessment Series no. 32. Rome: FAO Farfan, M. J., Cantero, L., Vidal, R., Botkin, D. J., and Torres, A. G. (2011). Long polar fimbriae of enterohemorrhagic Escherichia coli O157:H7 bind to extracellular matrix proteins. Infect. Immun. 79, 3744-3750. doi: 10.1128/IAI.05317-11
  20. Farrokh, C., Jordan, K., Auvray, F., Glass, K., Oppegaard, H., Raynaud, S., et al. (2013). Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int. J. Food Microbiol. 162, 190-212. doi: 10.1016/j.ijfoodmicro.2012.08.008
  21. Feng, J., Xu, K., Shi, X., Xu, L., Liu, L., Wang, F., et al. (2022). Incidence and cost of haemolytic uraemic syndrome in urban China: a national population-based analysis. BMC Nephrol. 23:122. doi: 10.1186/s12882-022-02746-2
  22. Franz, E., van Hoek, A. H. A. M., Wuite, M., van der Wal, F. J., de Boer, A. G., Bouw, E., et al. (2015). Molecular Hazard identification of non-O157 Shiga toxin-producing Escherichia coli (STEC). PLoS One 10:e0120353. doi: 10.1371/journal.pone.0120353
  23. Galarce, N., Sánchez, F., Escobar, B., Lapierre, L., Cornejo, J., Alegría-Morán, R., et al. (2021). Genomic epidemiology of Shiga toxin-producing Escherichia coli isolated from the livestock-food-human Interface in South America. Animals 11:1845. doi: 10.3390/ ani11071845
  24. Gasparrini, A. J., Markley, J. L., Kumar, H., Wang, B., Fang, L., Irum, S., et al. (2020).
  25. Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance. Commun. Biol. 3:241. doi: 10.1038/s42003-020-0966-5
  26. Gomi, R., Matsuda, T., Matsumura, Y., Yamamoto, M., Tanaka, M., Ichiyama, S., et al. (2017). Whole-genome analysis of antimicrobial-resistant and Extraintestinal pathogenic Escherichia coli in river. Water. Appl. Environ. Microbiol. 83:e02703-16. doi: 10.1128/AEM.02703-16
  27. Gun, H., Yilmaz, A., Turker, S., Tanlasi, A., and Yilmaz, H. (2003). Contamination of bovine carcasses and abattoir environment by Escherichia coli O157:H7 in Istanbul. Int. J. Food Microbiol. 84, 339-344. doi: 10.1016/S0168-1605(02)00476-2
  28. Hadler, J. L., Clogher, P., Hurd, S., Phan, Q., Mandour, M., Bemis, K., et al. (2011).
  29. Ten-year trends and risk factors for non-O157 Shiga toxin-producing Escherichia coli found through Shiga toxin testing, Connecticut, 2000-2009. Clin. Infect. Dis. 53, 269-276. doi: 10.1093/cid/cir377
  30. Herold, S., Paton, J. C., and Paton, A. W. (2009). Sab, a novel autotransporter of locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli O113:H21, contributes to adherence and biofilm formation. Infect. Immun. 77, 3234-3243. doi: 10.1128/IAI.00031-09
  31. Hua, Y., Zhang, J., Jernberg, C., Chromek, M., Hansson, S., Frykman, A., et al. (2021). Molecular characterization of the Enterohemolysin gene (ehxA) in clinical Shiga toxin- producing Escherichia coli isolates. Toxins 13:71. doi: 10.3390/toxins13010071
  32. Iguchi, A., Iyoda, S., Seto, K., Morita-Ishihara, T., Scheutz, F., and Ohnishi, M. (2015). Escherichia coli O-genotyping PCR: a comprehensive and practical platform for molecular O serogrouping. J. Clin. Microbiol. 53, 2427-2432. doi: 10.1128/JCM.00321-15
  33. Joensen, K. G., Scheutz, F., Lund, O., Hasman, H., Kaas, R. S., Nielsen, E. M., et al. (2014). Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52, 1501-1510. doi: 10.1128/JCM.03617-13
  34. Joensen, K. G., Tetzschner, A. M. M., Iguchi, A., Aarestrup, F. M., and Scheutz, F. (2015). Rapid and easy in Silico serotyping of Escherichia coli isolates by use of whole- genome sequencing data. J. Clin. Microbiol. 53, 2410-2426. doi: 10.1128/JCM.00008-15
  35. Joshi, N. A., and Fass, J. N. (2011). Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.21) [Software]. Available at: https://github.com/ najoshi/sickle (Accessed December 12, 2022).
  36. Kaper, J. B., Nataro, J. P., and Mobley, H. L. (2004). Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123-140. doi: 10.1038/nrmicro818
  37. Koutsoumanis, K., Allende, A., Alvarez-Ordóñez, A., Bover-Cid, S., Chemaly, M.,
  38. Davies, R., et al. (2020). Scientific opinion on the pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J. 18:5967. doi: 10.2903/j.efsa.2020.5967
  39. Larsen, M. V., Cosentino, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R. L., et al. (2012). Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 50, 1355-1361. doi: 10.1128/JCM.06094-11
  40. Li, M., Wang, K., Tang, A., Tang, A., Chen, A., and Huang, Z. (2021). Investigation of the genes involved in the outbreaks of Escherichia coli and salmonella spp. in the United States. Antibiotics 10:1274. doi: 10.3390/antibiotics10101274
  41. Majowicz, S. E., Scallan, E., Jones-Bitton, A., Sargeant, J. M., Stapleton, J., Angulo, F. J., et al. (2014). Global incidence of human Shiga toxin-producing Escherichia coli infections and deaths: a systematic review and knowledge synthesis. Foodborne Pathog. Dis. 11, 447-455. doi: 10.1089/fpd.2013.1704
  42. Malahlela, M. N., Cenci-Goga, B. T., Marufu, M. C., Fonkui, T. Y., Grispoldi, L., Etter, E., et al. (2022). Occurrence, serotypes and virulence characteristics of Shiga- toxin-producing Escherichia coli isolates from goats on communal rangeland in South Africa. Toxins 14:353. doi: 10.3390/toxins14050353
  43. Martorelli, L., Albanese, A., Vilte, D., Cantet, R., Bentancor, A., Zolezzi, G., et al. (2017). Shiga toxin-producing Escherichia coli (STEC) O22:H8 isolated from cattle reduces E. coli O157:H7 adherence in vitro and in vivo. Vet. Microbiol. 208, 8-17. doi: 10.1016/j.vetmic.2017.06.021
  44. Masana, M. O., D' Astek, B. A., Palladino, P. M., Galli, L., Del Castillo, L. L., Carbonari, C., et al. (2011). Genotypic characterization of non-O157 Shiga toxin- producing Escherichia coli in beef abattoirs of Argentina. J. Food Prot. 74, 2008-2017. doi: 10.4315/0362-028X.JFP-11-189
  45. Menge, C. (2020). The role of Shiga toxins in STEC colonization of cattle. Toxins 12:607. doi: 10.3390/toxins12090607
  46. Montero, D. A., Canto, F. D., Velasco, J., Colello, R., Padola, N. L., Salazar, J. C., et al. (2019). Cumulative acquisition of pathogenicity islands has shaped virulence potential and contributed to the emergence of LEE-negative Shiga toxin-producing Escherichia coli strains. Emerg. Microbes. Infect. 8, 486-502. doi: 10.1080/22221751.2019.1595985
  47. Montero, D. A., Velasco, J., Del Canto, F., Puente, J. L., Padola, N. L., Rasko, D. A., et al. (2017). Locus of adhesion and autoaggregation (LAA), a pathogenicity island present in emerging Shiga toxin-producing Escherichia coli strains. Sci. Rep. 7:7011. doi: 10.1038/ s41598-017-06999-y Mota, M. I., Vázquez, S., Cornejo, C., Alessandro, B., Braga, V., Caetano, A., et al. (2020). Does Shiga toxin-producing Escherichia coli and Listeria monocytogenes contribute significantly to the burden of antimicrobial resistance in Uruguay? Front. Vet Sci. 7:583930. doi: 10.3389/fvets.2020.583930
  48. Ndegwa, E., O'Brien, D., Matthew, K., Wang, Z., and Kim, J. (2022). Shiga toxin subtypes, serogroups, phylogroups, RAPD genotypic diversity, and select virulence markers of Shiga-toxigenic Escherichia coli strains from goats in mid-Atlantic US. Microorganisms 10:1842. doi: 10.3390/microorganisms10091842
  49. Newton, H. J. (2009). Shiga toxin-producing Escherichia coli strains negative for locus of enterocyte effacement. Emerg. Infect. Dis. 15, 372-380. doi: 10.3201/eid1503.
  50. Oderiz, S., Leotta, G. A., and Galli, L. (2018). Plata. Rev. Argent. Microbiol. 50, 341-350. doi: 10.1016/j. ram.2017.08.008
  51. Paton, A. W., and Paton, J. C. (1998). Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx 1, stx 2, eae a, enterohemorrhagic E. coli hly A, rfb O111, and rfb O157. J. Clin. Microbiol. 36, 598-602. doi: 10.1128/ JCM.36.2.598-602.1998
  52. Paton, A. W., and Paton, J. C. (2002). Direct detection and characterization of Shiga toxigenic Escherichia coli by multiplex PCR for stx1, stx2, eae, ehxA, and saa. J. Clin. Microbiol. 40, 271-274. doi: 10.1128/JCM.40.1.271-274.2002 10.3389/fmicb.2023.1130170
  53. Frontiers in Microbiology 12 frontiersin.org
  54. Peirano, V., Bianco, M. N., Navarro, A., Schelotto, F., and Varela, G. (2018). Diarrheagenic Escherichia coli associated with acute gastroenteritis in children from Soriano, Uruguay. Can. J. Infect. Dis. Med. Microbiol. 8:8387218. doi: 10.1155/2018/8387218
  55. Peng, Z., Liang, W., Hu, Z., Li, X., Guo, R., Hua, L., et al. (2019). O-serogroups, virulence genes, antimicrobial susceptibility, and MLST genotypes of Shiga toxin- producing Escherichia coli from swine and cattle in Central China. BMC Vet. Res. 15:427. doi: 10.1186/s12917-019-2177-1
  56. Rasko, D. A., Webster, D. R., Sahl, J. W., Bashir, A., Boisen, N., Scheutz, F., et al. (2011). Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N. Engl. J. Med. 365, 709-717. doi: 10.1056/NEJMoa1106920
  57. Rivas, M., Chinen, I., and Guth, B. E. C. (2016). "Enterohemorrhagic (Shiga toxin- producing) Escherichia coli" in Escherichia coli in the Americas. ed. A. Torres (Cham: Springer), 97-123.
  58. Robins-Browne, R. M., Holt, K. E., Ingle, D. J., Hocking, D. M., Yang, J., and Tauschek, M. (2016). Are Pathotypes still relevant in the era of whole-genome sequencing? Front. Cell. Infect. Microbiol. 6:141. doi: 10.3389/fcimb.2016.00141
  59. Scheutz, F., Teel, L. D., Beutin, L., Piérard, D., Buvens, G., Karch, H., et al. (2012). Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J. Clin. Microbiol. 50, 2951-2963. doi: 10.1128/JCM.00860-12
  60. Slater, G. S. C., and Birney, E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6:31. doi: 10.1186/1471-2105-6-31
  61. Stromberg, Z. R., Baumann, N. W., Lewis, G. L., Sevart, N. J., Cernicchiaro, N., Renter, D. G., et al. (2015). Prevalence of enterohemorrhagic Escherichia coli O26, O45, O103, O111, O121, O145, and O157 on hides and preintervention carcass surfaces of feedlot cattle at harvest. Foodborne Pathog. Dis. 12, 631-638. doi: 10.1089/fpd.2015.1945
  62. Tack, D. M., Marder, E. P., Griffin, P. M., Cieslak, P. R., Dunn, J., Hurd, S., et al. (2019). Preliminary incidence and trends of infections with pathogens transmitted commonly through food-foodborne diseases active surveillance network, 10 U.S. sites, 2015-2018.
  63. MMWR Morb. Mortal. Wkly Rep. 68, 369-373. doi: 10.15585/mmwr.mm6816a2
  64. Thaker, M., Spanogiannopoulos, P., and Wright, G. D. (2010). The tetracycline resistome. Cell. Mol. Life Sci. 67, 419-431. doi: 10.1007/s00018-009-0172-6
  65. Torres, A. G., Amaral, M. M., Bentancor, L., Galli, L., Goldstein, J., Krüger, A., et al. (2018). Recent advances in Shiga toxin-producing research in Latin America. Microorganisms 6:100. doi: 10.3390/microorganisms6040100
  66. Torti, J. F., Cuervo, P., Nardello, A., and Pizarro, M. (2021). Epidemiology and characterization of Shiga toxin-producing Escherichia coli of hemolytic uremic syndrome in Argentina. Cureus 13:e17213. doi: 10.7759/cureus.17213
  67. Tsutsuki, H., Zhang, T., Yahiro, K., Ono, K., Fujiwara, Y., Iyoda, S., et al. (2022). Subtilase cytotoxin from Shiga-toxigenic Escherichia coli impairs the inflammasome and exacerbates enteropathogenic bacterial infection. IScience 25:104050. doi: 10.1016/j. isci.2022.104050
  68. Umpiérrez, A., Ernst, D., Cardozo, A., Torres, A., Fernández, M., Fraga, M., et al. (2022). Non-O157 Shiga toxin-producing Escherichia coli with potential harmful profiles to humans are isolated from the faeces of calves in Uruguay. Austral J. Vet. Sci. 54, 45-53. doi: 10.4067/S0719-81322022000200045
  69. Vally, H., Hall, G., Dyda, A., Raupach, J., Knope, K., Combs, B., et al. (2012). Epidemiology of Shiga toxin producing Escherichia coli in Australia, 2000-2010. BMC Public Health 12:63. doi: 10.1186/1471-2458-12-63
  70. Varela, G., Chinen, I., Gadea, P., Miliwebsky, E., Mota, M., González, S., et al. (2008). . Argent. Microbiol. 40, 93-100. PMID: 18705489
  71. Varela-Hernández, J. J., Cabrera-Diaz, E., Cardona-López, M. A., Ibarra-Velázquez, L. M., Rangel-Villalobos, H., Castillo, A., et al. (2007). Isolation and characterization of Shiga toxin-producing Escherichia coli O157:H7 and non-O157 from beef carcasses at a slaughter plant in Mexico. Int. J. Food Microbiol. 113, 237-241. doi: 10.1016/j.ijfoodmicro.2006.06.028
  72. Vélez, M. V., Colello, R., Etcheverría, A. I., Vidal, R. M., Montero, D. A., Acuña, P., et al. (2020). Distribution of locus of adhesion and autoaggregation and hes Gene in STEC strains from countries of Latin America. Curr. Microbiol. 77, 2111-2117. doi: 10.1007/s00284-020-02062-8
  73. Wang, Y., Tang, C., Yu, W., Xia, M., and Yue, H. (2010). Distribution of serotypes and virulence-associated genes in pathogenic Escherichia coli isolated from ducks. Avian Pathol. 39, 297-302. doi: 10.1080/03079457.2010.495742
  74. World Health Organization and Food and Agriculture Organization of the United Nations (2018). Shiga toxin-producing Escherichia coli (STEC) and food: attribution, characterization, and monitoring: report. World Health Organization. Available at: https://apps.who.int/iris/handle/10665/272871 (Accessed February 17, 2023).
  75. Zankari, E., Allesøe, R., Joensen, K. G., Cavaco, L. M., Lund, O., and Aarestrup, F. M. (2017). Point finder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 72, 2764-2768. doi: 10.1093/jac/dkx217
  76. Zerbino, D. R., and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821-829. doi: 10.1101/gr.074492.107