Codon populations in single-stranded whole human genome DNA Are fractal and fine-tuned by the Golden Ratio 1.618 (original) (raw)
Related papers
International Journal of Research -GRANTHAALAYAH
The discovery of a simple numerical formula for the projection of all the atomic mass of life-sustaining CONHSP bioatoms leads to the emergence of a set of Nested CODES unifying all the biological, genetic and genomic components by unifying them from bioatoms up to 'to whole genomes. In particular, we demonstrate the existence of a digital meta-code common to the three languages of biology that are RNA, DNA and amino acid sequences. Through this meta-code, genomic and proteomic images appear almost analogous and correlated. The analysis of the textures of these images then reveals a binary code as well as an undulatory code whose analysis on the human genome makes it possible to predict the alternating bands constituting the cariotypes of the chromosomes. The application of these codes to perspectives in astrobiology and the emergence of binary codes and regions of local stability (voting process), whose fractal nature we demonstrate, is illustrated. The fundamental discovery ...
2018
The discovery of a simple numerical formula for the projection of all the atomic mass of life-sustaining CONHSP bioatoms leads to the emergence of a set of Nested CODES unifying all the biological, genetic and genomic components by unifying them from bioatoms up to 'to whole genomes. In particular, we demonstrate the existence of a digital meta-code common to the three languages of biology that are RNA, DNA and amino acid sequences. Through this meta-code, genomic and proteomic images appear almost analogous and correlated. The analysis of the textures of these images then reveals a binary code as well as an undulatory code whose analysis on the human genome makes it possible to predict the alternating bands constituting the cariotypes of the chromosomes. The application of these codes to perspectives in astrobiology, in Cancers basic research and the emergence of binary codes and regions of local stability (voting process), whose fractal nature we demonstrate, is illustrated.
Fractals and Hidden Symmetries in DNA
This paper deals with the digital complex representation of a DNA sequence and the analysis of existing correlations by wavelets. The symbolic DNA sequence is mapped into a nonlinear time series. By studying this time series the existence of fractal shapes and symmetries will be shown. At first step, the indicator matrix enables us to recognize some typical patterns of nucleotide distribution. The DNA sequence, of the influenza virus A H1N1, is investigated by using the complex representation, together with the corresponding walks on DNA; in particular, it is shown that DNA walks are fractals. Finally, by using the wavelet analysis, the existence of symmetries is proven.
2015
Conserved, ultraconserved and other classes of constrained non-coding elements (referred as CNEs) represent one of the mysteries of current comparative genomics. These elements are defined using various degrees of sequence similarity between organisms and several thresholds of minimal length and are often marked by extreme conservation that frequently exceeds the one observed for protein-coding sequences. We here explore the distribution of different classes of CNEs in entire chromosomes, in the human genome. We employ two complementary methodologies, the scaling of block entropy and box-counting, with the aim to assess fractal characteristics of different CNE datasets. Both approaches converge to the conclusion that well-developed fractality is characteristic of elements that are either marked by extreme conservation between two or more organisms or are of ancient origin, i.e. conserved between distant organisms across evolution. Given that CNEs are often clustered around genes, es...