Making lignin accessible for anaerobic digestion by wet-explosion pretreatment (original) (raw)

Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment

Energies, 2021

Large amounts of lignin residue is expected in the future when biorefineries for producing biofuels and bio-products will increase in numbers. It is, therefore, valuable to find solutions for using this resource for the sustained production of useful bioenergy or bio-products. Anaerobic digestion could potentially be an option for converting the biorefinery lignin into a valuable energy product. However, lignin is recalcitrant to biodegradation under anaerobic conditions unless the structure is modified. Wet oxidation followed by steam explosion (wet explosion) was previously found to make significant changes to the lignin structure allowing for biodegradation under anaerobic conditions. In this study, we examine the effect of wet explosion pretreatment for anaerobic digestion of wheat straw lignin under mesophilic (37 o C) conditions. Besides the biorefinery lignin produced from wheat straw, untreated lignin was further tested as feed material for anaerobic digestion. Our results s...

Microbial biogas production from hydrolysis lignin: insight into lignin structural changes

Biotechnology for Biofuels, 2018

Background: The emerging cellulosic bioethanol industry will generate huge amounts of lignin-rich residues that may be converted into biogas by anaerobic digestion (AD) to increase the output of energy carriers from the biorefinery plants. The carbohydrates fraction of lignocellulosic biomass is degradable, whereas the lignin fraction is generally considered difficult to degrade during AD. The objective of this study was to investigate the feasibility of biogas production by AD from hydrolysis lignin (HL), prepared by steam explosion (SE) and enzymatic saccharification of birch. A novel nylon bag technique together with two-dimensional nuclear magnetic resonance spectroscopy, pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS), and Fourier transform infrared (FTIR) spectroscopy was used to identify recalcitrant and degradable structures in the lignin during AD. Results: The HL had a lignin content of 80% which included pseudo-lignin and condensed-lignin structures resulting from the SE pretreatment. The obtained methane yield from HL was almost twofold higher than the theoretical methane from the carbohydrate fraction alone, indicating that part of the lignin was converted to methane. Characterization of the undegradable material after AD revealed a substantial loss of signals characteristic for carbohydrates and lignin-carbohydrate complexes (LCC), indicating conversion of these chemical components to methane during AD. The β-O-4′ linkage and resinol were not modified as such in AD, but major change was seen for the S/G ratio from 5.8 to 2.6, phenylcoumaran from 4.9 to 1.0%, and pseudo-lignin and condensed-lignin were clearly degraded. Scanning electron microscopy and simultaneous thermal analysis measurements demonstrated changes in morphology and thermal properties following SE pretreatment and AD. Our results showed that carbohydrate, LCC, pseudo-lignin, and condensed-lignin degradation had contributed to methane production. The energy yield for the combined ethanol production and biogas production was 8.1 MJ fuel per kg DM of substrate (4.9 MJ/kg from ethanol and 3.2 MJ/kg from methane). Conclusion: This study shows the benefit of using a novel bag technique together with advanced analytical techniques to investigate the degradation mechanisms of lignin during AD, and also points to a possible application of HL produced in cellulosic bioethanol plants.

Thermophilic anaerobic biodegradation of [14C] lignin,[14C] cellulose, and [14C] lignocellulose preparations

Thermophilic (55°C) anaerobic enrichment cultures were incubated with [14C-lignin]lignocellulose, ['4Cpolysaccharidellignocellulose, and kraft [14C]lignin prepared from slash pine, Pinus elliottii, and 14C-labeled preparations of synthetic lignin and purffied cellulose. Significant but low percentages (2 to 4%) of synthetic and natural pine lignin were recovered as labeled methane and carbon dioxide during 60-day incubations, whereas much greater percentages (13 to 23%) of kraft lignin were recovered as gaseous end products. Percentages of label recovered from lignin-labeled substrates as dissolved degradation products were approximately equal to percentages recovered as gaseous end products. High-pressure liquid chromatographic analyses of CuO oxidation products of sound and degraded pine lignin indicated that no substantial chemical modifications of the remaining lignin polymer, such as demethoxylation and dearomatization, occurred during biodegradation. The polysaccharide components of pine lignocellulose and purified cellulose were relatively rapidly mineralized to methane and carbon dioxide; 31 to 37% of the pine polysaccharides and 56 to 63% of the purified cellulose were recovered as labeled gaseous end products. An additional 10 to 20% of the polysaccharide substrates was recovered as dissolved degradation products. Overall, these results indicate that elevated temperatures can greatly enhance rates of anaerobic degradation of lignin and lignified substrates to methane and low-molecular-weight aromatic compounds.

Lignin Transformation of One-Year-Old Plants During Anaerobic Digestion (AD)

Polymers, 2019

The aim of the research is to identify the changes which occur in lignin from miscanthus and sorghum, one of the main biomass components, as a result of an anaerobic digestion (AD) process. The percentage content and structure of lignin before and after the fermentation process were analysed using biomass harvested in two growing periods—before and after vegetation. It was shown that plants at different developmental stages differ in lignin content. During plant growth, the lignin structure also changes—the syringyl-to-guaiacyl ratio (S/G) increases, whereas the aliphatic and aromatic structure ratio (Al/Ar) decreases. The AD process leads to an increase in percentage lignin content in cell walls, and the increase is higher for plants harvested during vegetation. It has been shown in studies that the methane fermentation of miscanthus and sorghum produces waste containing a large amount of lignin, the structure of which is altered relative to native lignin. The quantity and the new,...

Effect of Semi-Continuous Anaerobic Digestion on the Substrate Solubilisation of Lignin-Rich Steam-Exploded Ludwigia grandiflora

Applied Sciences

In this study, semi-continuous anaerobic digestion of lignin-rich steam-exploded Ludwigia grandiflora (Lignin = 25.22% ± 4.6% total solids) was performed to understand better the effect of steam explosion on the substrate solubilisation and inhibitors formation during the process. Steam explosion pretreatment was performed at 180 °C for 30 min at a severity factor of 3.8 to enhance the biogas yield of the lignocellulosic biomass. The semi-continuous anaerobic digestion was performed in a continuously stirred tank reactor for 98 days at an initial hydraulic retention time of 30 days and an organic loading rate of 0.9 g-VS L−1 day−1. The performed steam explosion pretreatment caused biomass solubilisation, resulting in enhanced biogas production during the process. During the anaerobic digestion process, the average biogas yield was 265 mL g-VS−1, and the pH throughout the operation was in the optimum range of 6.5–8.2. Due to fluctuations in the biogas yield, the hydraulic retention t...

Understanding lignin biodegradation for the improved utilization of plant biomass in modern biorefineries

Biofuels, Bioproducts and Biorefining, 2014

Wood-rotting fungi are the sole organisms in nature able to degrade the lignin polymer making the polysaccharide components of lignocellulose fully accessible. This process has been investigated for decades as a model for biotechnological application in the pulp and paper industry, animal feeding, and ethanol production. In the current lignocellulose biorefinery concept, ligninolytic fungi and the oxidoreductases (laccases and peroxidases) secreted by these fungi constitute powerful biotechnological tools for the complete utilization of plant biomass. The evolution of molecular biology, which brings into play specifi cally designed biological systems and on-demand enzymes, together with the technological advances in processing of plant biomass, smoothes the way for a sustainable conversion of renewable feedstocks to new added-value products, with lower energy costs and less environmental impact. The present study reviews some of the main achievements attained by our group in the fi eld of lignin biodegradation that have contributed to: (i) better understanding of the mechanisms by which fungi delignify the lignocellulosic materials; and (ii) assessing the applicability of these ligninolytic systems to increase the effi ciency of some industrial processes and to develop new means for sustainable and environmentally sound production of chemicals, materials, and fuels.

Effects of lignin on the anaerobic degradation of (ligno) cellulosic wastes by rumen microorganisms

Applied Microbiology and Biotechnology, 1988

There appeared to be a clear correlation between the lignin content (% of TS) of several waste and natural materials and their degradability by rumen microorganisms. Materials with lignin contents higher than 25% were not degraded within 72 h. The effects of Kraft pine lignin and some lignin monomers on filter paper degradation, methane production and CMCase activity were tested. Testing these compounds in concentrations comparable to natural conditions showed minor effects. At higher concentrations p-coumaric acid strongly inhibited cellulose degradation and methane production in batch cultures. Influence of lignin compounds on degradation is discussed in relation to structural effects and enzyme or growth inhibition.

Biodegradation of lignin in a compost environment: a review

Composting is nowadays a general treatment method for municipal solid waste. Compostable household waste contains, together with vegetable material, varying amounts of papers and boards. In the European Union composting is regarded as one recycling method for packages and this will probably favour compostable packages, like papers and boards, in the future. Paper is made up of lignocellulose and it may contain up to 20% of lignin. Ecient degradation of papers in composting plants means that biodegradation of lignin is also needed. However, very little is known about lignin degradation by mixed microbial compost populations, although lignin degradation by white-rot fungi has been extensively studied in recent years. Organic material is converted to carbon dioxide, humus, and heat by compost microorganisms. It is assumed that humus is formed mainly from lignin. Thus, lignin is not totally mineralized during composting. The elevated temperatures found during the thermophilic phase are essential for rapid degradation of lignocellulose. Complex organic compounds like lignin are mainly degraded by thermophilic microfungi and actinomycetes. The optimum temperature for thermophilic fungi is 40±50°C which is also the optimum temperature for lignin degradation in compost. Ó

The effect of lignin and sugars to the aerobic decomposition of solid wastes

Waste Management, 2003

A series of experimental runs were conducted from 1995 to 1999 in Madison (WI, USA) with the goal to investigate the biodegradation process of seven (7) solid waste components and mixtures of them under near optimal aerobic conditions. It was shown that substrates with high initial lignin contents or high initial HWSM contents were observed to have relatively low and high degradation extents, respectively. Two linear equations were derived that correlate degradation extent (as indicated by the volatile solids reduction) to initial lignin and initial HWSM contents separately. The lignin equation was compared to a similar equation previously developed for anaerobic environments by Chandler et al. [Predicting methane fermentation biodegradability. In: Biotechnology and Bioengineering Symposium No. 10 (1980) New York: John Wiley & Sons]. With comparison to the Chandler formula, lignin was found to be less inhibitory to the overall substrate decomposition in aerobic environments compared to anaerobic ones. Cellulose loss contributed to a higher than 50% to the overall dry mass loss for all substrates studied. In addition, the cellulose to lignin (C/L) ratio appeared to be a relatively accurate compost maturity indicator, since it reduced to a value less than 0.5 for most substrates that had reached their degradation extent.