Reprint of: Cytotoxicity, cell uptake and microscopic analysis of titanium dioxide and silver nanoparticles in vitro (original) (raw)

Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo

Toxicology, 2014

Although nanomaterials have the potential to improve human life, their sideline effects on human health seem to be inevitable and still remain unknown. This study aimed to investigate the cytotoxicity and genotoxicity of titanium dioxide (TiO 2) and silver (Ag) nanoparticles (NPs) at different doses and particle sizes to bone marrow cells. Both types of nanoparticles were chosen due to their wide applications of them in consumer products. Rats were injected intravenously with a single dose of 5 or 10 mg/kg bw of 20 nm AgNPs or with 5 mg/kg bw 200 nm AgNPs or with 5 mg/kg bw 21 nm TiO 2 NPs. The samples were taken at 24 h, 1 week and 4 weeks following the exposure. Micronucleus test and the Comet assay were used to detect DNA damage. Neither AgNPs nor TiO 2 NPs caused cytotoxicity to bone marrow red and white cells. The polychromatic erythrocytes are the main target of both nanoparticles. A single exposure to AgNPs induced significantly enhanced frequency of micronuclei not only at 24 h after exposure, but also 1 and 4 weeks later, whereas single exposure to TiO 2 NPs showed positive effect at 24 h only. Negative responses were shown in reticulocytes (micronuclei) and in leukocytes (Comet assay) of bone marrow. Results indicated that different bone marrow cells display different susceptibility toward genotoxicity mediated by both investigated nanoparticles. The use of materials containing nanoparticles and the potential health implication of them should be monitored.

The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells

Toxicology Letters, 2012

Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20 nm and 200 nm) and titanium dioxide (21 nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact.

In vitro assessment of Ag and TiO2 nanoparticles cytotoxicity

International Journal of Research in Medical Sciences, 2014

cell membranes of bacteria causing breaks in the membrane and the cell to essentially burst. 3 It is this innate property that has led to an array of potential applications of Ag nanoparticles in both the medical arena and consumer products. Ag has traditionally been used as an antimicrobial agent 4 for many years in a diverse range of applications: