GAIP, a Gαi-3-binding protein, is associated with Golgi-derived vesicles and protein trafficking (original) (raw)
Related papers
Regulation of Golgi structure and secretion by receptor-induced G protein complex translocation
Proceedings of The National Academy of Sciences, 2010
We show that receptor induced G protein βγ subunit translocation from the plasma membrane to the Golgi allows a receptor to initiate fragmentation and regulate secretion. A lung epithelial cell line, A549, was shown to contain an endogenous translocating G protein γ subunit and exhibit receptor-induced Golgi fragmentation. Receptor-induced Golgi fragmentation was inhibited by a shRNA specific to the endogenous translocating γ subunit. A kinase defective protein kinase D and a phospholipase C β inhibitor blocked receptor-induced Golgi fragmentation, suggesting a role for this process in secretion. Consistent with βγ translocation dependence, fragmentation induced by receptor activation was inhibited by a dominant negative nontranslocating γ3. Insulin secretion was shown to be induced by muscarinic receptor activation in a pancreatic β cell line, NIT-1. Induction of insulin secretion was also inhibited by the dominant negative γ3 subunit consistent with the Golgi fragmentation induced by βγ complex translocation playing a role in secretion.
RGS-GAIP (Ga-interacting protein) is a member of the RGS (regulator of G protein signaling) family of proteins that functions to down-regulate Gai/Gaq-linked signaling. GAIP is a GAP or guanosine triphosphatase-activating protein that was initially discov- ered by virtue of its ability to bind to the heterotrimeric G protein Gai3, which is found on both the plasma membrane (PM) and Golgi membranes. Previously, we demonstrated that, in contrast to most other GAPs, GAIP is membrane anchored and palmitoylated. In this work we used cell fractionation and immunocytochemistry to determine with what particular membranes GAIP is associated. In pituitary cells we found that GAIP frac- tionated with intracellular membranes, not the PM; by immunogold labeling GAIP was found on clathrin-coated buds or vesicles (CCVs) in the Golgi region. In rat liver GAIP was concentrated in vesicular carrier fractions; it was not found in either Golgi- or PM-enriched fractions. By immunogold labeling it was de...
Traffic, 2002
Golgi network that interacts with microtubule minus ends. GMAP-210 overexpression has previously been shown to perturb the microtubule network and to induce a dramatic enlargement and fragmentation of the Golgi apparatus (Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM. J Cell Biol 1999; 145: 83-98). We now report that overexpressing GMAP-210 blocks the anterograde transport of both a soluble form of alkaline phosphatase and the hemagglutinin protein of influenza virus, an integral membrane protein, between the endoplasmic reticulum and the cis/medial (mannosidase II-positive) Golgi compartment. Retrograde transport of the Shiga toxin B-subunit is also blocked between the Golgi apparatus and the endoplasmic reticulum. As a consequence, the B-subunit accumulates in compartments positive for GMAP-210. Ultrastructural analysis revealed that, under these conditions, the Golgi complex is totally disassembled and Golgi proteins as well as proteins of the intermediate compartment are found in vesicle clusters distributed throughout the cell. The role of GMAP-210 on membrane processes at the interface between the endoplasmic reticulum and the Golgi apparatus is discussed in the light of the property of this protein to bind CGN membranes and microtubules.
Molecular Biology of the Cell, 1998
RGS-GAIP (Gα-interacting protein) is a member of the RGS (regulator of G protein signaling) family of proteins that functions to down-regulate Gαi/Gαq-linked signaling. GAIP is a GAP or guanosine triphosphatase-activating protein that was initially discovered by virtue of its ability to bind to the heterotrimeric G protein Gαi3, which is found on both the plasma membrane (PM) and Golgi membranes. Previously, we demonstrated that, in contrast to most other GAPs, GAIP is membrane anchored and palmitoylated. In this work we used cell fractionation and immunocytochemistry to determine with what particular membranes GAIP is associated. In pituitary cells we found that GAIP fractionated with intracellular membranes, not the PM; by immunogold labeling GAIP was found on clathrin-coated buds or vesicles (CCVs) in the Golgi region. In rat liver GAIP was concentrated in vesicular carrier fractions; it was not found in either Golgi- or PM-enriched fractions. By immunogold labeling it was detect...
Role of GARP Vesicle Tethering Complex in Golgi Physiology
International Journal of Molecular Sciences
The Golgi associated retrograde protein complex (GARP) is an evolutionarily conserved component of Golgi membrane trafficking machinery that belongs to the Complexes Associated with Tethering Containing Helical Rods (CATCHR) family. Like other multisubunit tethering complexes such as COG, Dsl1, and Exocyst, the GARP is believed to function by tethering and promoting fusion of the endosome-derived small trafficking intermediate. However, even twenty years after its discovery, the exact structure and the functions of GARP are still an enigma. Recent studies revealed novel roles for GARP in Golgi physiology and identified human patients with mutations in GARP subunits. In this review, we summarized our knowledge of the structure of the GARP complex, its protein partners, GARP functions related to Golgi physiology, as well as cellular defects associated with the dysfunction of GARP subunits.
FEBS Letters, 1991
analogues of GTP, such as GTPyS and GMP-PNP, have pr,~viously been shown to inhibit the formation of¢onstitutive secretory vesicles (CSVs) and immature secretory granules (ISGs) from the trans-Golgi network (TGN). Using a cell-free system, we show here that the formation of these vesicles is also inhibited by [A1F+]-. a compound known to act on trimeric G-proteins. Addition of highly purified G-protem J~Y subunits stimulated, in a differential manner, the oell-free formation of both CSVs an~ ISGs. ADP-ribosylation experiments revealed the presence of a pertussis toxin-sensitive G-protein ~ subunit in the TGN. ~0~'e conclude that trimer=c G-proteins regulate the formation at + secretory vesicles from the TGN.
Regulation of Golgi structure and secretion by receptor-induced G protein βγ complex translocation
Proceedings of the National Academy of Sciences of the United States of America, 2010
We show that receptor induced G protein βγ subunit translocation from the plasma membrane to the Golgi allows a receptor to initiate fragmentation and regulate secretion. A lung epithelial cell line, A549, was shown to contain an endogenous translocating G protein γ subunit and exhibit receptor-induced Golgi fragmentation. Receptor-induced Golgi fragmentation was inhibited by a shRNA specific to the endogenous translocating γ subunit. A kinase defective protein kinase D and a phospholipase C β inhibitor blocked receptor-induced Golgi fragmentation, suggesting a role for this process in secretion. Consistent with βγ translocation dependence, fragmentation induced by receptor activation was inhibited by a dominant negative nontranslocating γ3. Insulin secretion was shown to be induced by muscarinic receptor activation in a pancreatic β cell line, NIT-1. Induction of insulin secretion was also inhibited by the dominant negative γ3 subunit consistent with the Golgi fragmentation induced by βγ complex translocation playing a role in secretion.
Binding of the cytosolic p200 protein to Golgi membranes is regulated by heterotrimeric G proteins
Journal of Cell Science, 1993
The formation of vesicles for protein trafficking requires the dynamic binding of cytosolic coat proteins onto Golgi membranes and this binding is regulated by a variety of GTPases, including heterotrimeric G proteins. We have previously shown the presence of the pertussis toxin-sensitive G alpha i-3 protein on Golgi membranes and demonstrated a functional role for G alpha i-3 in the trafficking of secretory proteins through the Golgi complex. We have also described a brefeldin A-sensitive phosphoprotein, p200, which is found in the cytoplasm and on Golgi membranes. The present study investigates the role of heterotrimeric G proteins in the regulation of p200 binding to Golgi membranes. An in vitro binding assay was used to measure the binding of cytosolic p200 to LLC-PK1 cell microsomal membranes and to purified rat liver Golgi membranes in the presence of specific activators of G proteins. The binding of p200 to Golgi membranes was compared to that of the coatomer protein beta-COP...