A Simple and Accurate Method to Measure Total Gaseous Mercury Concentrations in Unsaturated Soils (original) (raw)

The precise measurement of concentration gradients of mercury in air over soils: A review of past and recent measurements

Water, Air, & Soil Pollution, 1995

Measurements of the aanospheric concentration gradients of mercury (Hg) vapor over soils can be used to determine the direction and magnitude of exchange rates of rig if certain assun~ons are met. However, these gradients are quite small and require highly precise sampling to achieve accurate data. We have developed a sampling and analysis procedure which allows quantification of gradients over background soils. With this procedure we can now measure atmospheric Hg at ambient levels with a precision of--0.5 to 2% (expressed as relative standard error). This level of precision is well above those published in earlier gradient studies. In our recent studies, gradients measured between 25 and 165 cm above background forest soils at Walker Branch Watershed, Tennessee were quite small, ranging from 0.02 to 0.39 ng/n,? (expressed as concentration differences). These gradients indicated that Hg emission was about 3 times more frequent than dry deposition. Gradients measured over soils at Lake OArdsj6n, Sweden were generally smaller but also indicated bidireetiomd fluxes. By comparison, gradieras above Hg-eontaminated soils in Termessee were fat larger as expected, ranging from 0.12 to 5.60 ng/n~. These gradients consistently indicated emission of Hg. A number of tests were performed to validate that these gradients were true indicatiot~s of Hg exchange rates.

Factors affecting the measurement of mercury emissions from soils with flux chambers

Journal of Geophysical Research, 1999

Air-surface exchange of mercury (Hg) above an arid geothermal area was measured with three parallel flux chamber experiments. The different experimental designs were intercompared with each other, with regard to the magnitude of the measured Hg fluxes and their response to environmental changes. Qualitatively, the measured Hg fluxes agreed well throughout the diurnal cycle, and in their response to environmental events and experimental manipulations, but quantitatively, there were significant discrepancies between the individua ! flux results. On average, the three designs yielded Hg fluxes agreeing within a factor of 2, but even more pronounced differences were observed during midday high emission periods and during apparent nighttime deposition events. The chamber flushing rate appears to have a very significant impact on the measured fluxes and on the response behavior to environmental change. This study demonstrates that both experimental differences and small-scale regional variability introduce large uncertainty in the estimation of natural Hg air-surface exchange by different flux chamber techniques. Also, the impact of environmental parameters on Hg air-surface exchange was studied. Rain events led to a strong increase in the Hg emissions, even when the covered soil remained dry, suggesting that the apparent chamber footprint is larger than the actually covered area. Exclusion of sunlight led to decreases in Hg emissions. Statistical analysis revealed the strongest correlations between the measured Hg fluxes and radiation and wind speed. Weaker correlations were observed with air and soil temperature and wind direction (probably due to local Hg sources). Fluxes were also inversely correlated with relative humidity.

Air-soil exchange of mercury from background soils in the United States

The Science of the total environment, 2006

The air-surface exchange of mercury (Hg) was measured, using a dynamic polycarbonate flux chamber, for soils with low or "background" Hg concentrations (<0.1 mg/kg) at eleven locations across the contiguous United States. Sampling locations included agricultural, desert, grassland, mixed and pine forest ecosystems (n=1326 soil flux measurements at 46 individual sites). An overall soil Hg flux of 0.9+/-0.2 ng/m2/h for these background soils was obtained by averaging the means for the different locations. Soil Hg fluxes were significantly lower in dark conditions than in the light for all but the grassland sites. Mean inlet air Hg concentrations were 1.0+/-0.1 ng/m3 in the dark and 1.3+/-0.2 ng/m3 in the light. Soil temperature inside and outside of the chamber, air temperature, relative humidity, and irradiance were measured concurrently with soil Hg flux. Soil-air Hg exchange was weakly predicted by environmental variables (R2 from 0.07 to 0.52). For a single location, ...

Air/Surface Exchange of Gaseous Elemental Mercury at Different Landscapes in Mississippi, USA

Atmosphere

Mercury (Hg) is a global pollutant with human health and ecological impacts. Gas exchange between terrestrial surfaces and the atmosphere is an important route for Hg to enter and exit ecosystems. Here, we used a dynamic flux chamber to measure gaseous elemental Hg (GEM) exchange over different landscapes in Mississippi, including in situ measurements for a wetland (soil and water), forest floor, pond, mowed field and grass-covered lawn, as well as mesocosm experiments for three different agricultural soils. Fluxes were measured during both the summer and winter. Mean ambient levels of GEM ranged between 0.93–1.57 ng m−3. GEM emission fluxes varied diurnally with higher daytime fluxes, driven primarily by solar radiation, and lower and more stable nighttime fluxes, dependent mostly on temperature. GEM fluxes (ng m−2 h−1) were seasonally dependent with net emission during the summer (mean 2.15, range 0.32 to 4.92) and net deposition during the winter (−0.12, range −0.32 to 0.12). Tot...

Development and application of a laboratory flux measurement system (LFMS) for the investigation of the kinetics of mercury emissions from soils

Journal of Environmental Management, 2006

Recent measurements at different locations suggest that the emission of mercury from soils may play a more pronounced role in the global mercury cycle as suggested by global emission inventories and global mercury cycling models. For up scaling and modelling of mercury emissions from soils a comprehensive assessment of the processes controlling the emission of mercury from soils is imperative. We have developed a laboratory flux measurement system (LFMS) to study the effect of major environmental variables on the emission of mercury under controlled conditions. We have investigated the effects of turbulent mixing, soil temperature and solar radiation on the emission of mercury from soils. The emission of mercury from soils is constant over time under constant experimental conditions. The response of the mercury emission flux to variations of the atmospheric transfer parameters such as turbulence requires a rapid adjustment of the equilibrium that controls the Hg o concentration in the soil air. It has been shown that the light-induced flux is independent of the soil temperature and shows a strong spectral response to UV-B. r

Soil mercury and its response to atmospheric mercury deposition across the northeastern United States

Ecological Applications, 2014

Terrestrial soil is a large reservoir of atmospherically deposited mercury (Hg). However, few studies have evaluated the accumulation of Hg in terrestrial ecosystems in the northeastern United States, a region which is sensitive to atmospheric Hg deposition. In this study, we characterize Hg and organic matter in soil profiles from 139 sampling sites for five sub-regions across the northeastern United States, and estimate atmospheric Hg deposition to these sites by combining numerical modeling with experimental data from the literature. We did not observe any significant relationships between current net atmospheric Hg deposition and soil Hg concentrations or pools, even though soils are a net sink for Hg inputs. Soil Hg appears to be preserved relative to organic carbon (OC) and/or nitrogen (N) in the soil matrix, as a significant negative relationship was observed between the ratios of Hg/OC and OC/N (r = 0.54, p < 0.0001) that shapes the horizonal distribution patterns. We estimated that atmospheric Hg deposition since 1850 (3.97 mg m-2) accounts for 102% of the Hg pool in the organic horizons (3.88 mg m-2) and 19% of the total soil Hg pool (21.32 mg m-2), except for the Southern New England (SNE) sub-region. The mean residence time for soil Hg was estimated to be 1,800 years, except SNE which was 800 years. These patterns suggest that in additional to atmospheric deposition the accumulation of soil Hg is linked to the mineral diagenetic and soil development processes in the region.

Mercury emission from terrestrial background surfaces in the eastern USA. II: Air/surface exchange of mercury within forests from South Carolina to New England

Applied Geochemistry, 2008

This study focused on the development of a seasonal data set of the Hg air/surface exchange over soils associated with low Hg containing surfaces in a deciduous forest in the southern USA. Data were collected every month for 11 months in 2004 within Standing Stone State Forest in Tennessee using the dynamic flux chamber method. Mercury air/surface exchange associated with the litter covered forest floor was very low with the annual mean daytime flux being 0.4 ± 0.5 ng m À2 h À1 (n = 301). The daytime Hg air/surface exchange over the year oscillated between emission (81% of samples with positive flux) and deposition (19% of samples with negative flux). A seasonal trend of lower emission in the spring and summer (closed canopy) relative to the fall and winter (open canopy) was observed. Correlations were found between the air/surface exchange and certain environmental factors on specific days sampled but not collectively over the entire year. The very low magnitude of Hg air/surface exchange as observed in this study suggests that an improved methodology for determining and reporting emission fluxes is needed when the values of fluxes and chamber blanks are both very low and comparable. This study raises questions and points to a need for more research regarding how to scale the Hg air/surface exchange for surfaces with very low emissions.

Mercury emissions in equilibrium: a novel approach for the quantification of mercury emissions from contaminated soils

Analytical Methods, 2013

Mercury emissions from soil samples with different mercury contents have been estimated using a closed circuit array. The samples were collected from the Almadén mercury mining district. The emissions confirmed that temperature and light radiation favour mercury desorption due to the increase in the mercury vapour pressure. An additional positive factor could be the photocatalytic reduction of soluble Hg 2+ to volatile Hg 0 at the soil surface. A physicochemical model based on mass transfer and equilibrium was developed and was used to reproduce the mercury emissions at the laboratory scale.

Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils

Environmental Pollution, 2014

Soils are a source of elemental mercury (Hg(0)) to the atmosphere, however the effects of soil temperature and moisture on Hg(0) formation is not well defined. This research quantifies the effect of varying soil temperature (278e303 K), moisture (15e80% water filled pore space (WFPS)) and sterilization on the kinetics of Hg(0) formation in forested soils of Nova Scotia, Canada. Both, the logarithm of cumulative mass of Hg(0) formed in soils and the reduction rate constants (k values) increased with temperature and moisture respectively. Sterilizing soils significantly (p < 0.05, n ¼ 10) decreased the percent of total Hg reduced to Hg(0). We describe the fundamentals of Hg(0) formation in soils and our results highlight two key processes: (i) a fast abiotic process that peaks at 45% WFPS and depletes a small pool of Hg(0) and; (ii) a slower, rate limiting biotic process that generates a large pool of reducible Hg(II).

Mercury emission from terrestrial background surfaces in the eastern USA. Part I: Air/surface exchange of mercury within a southeastern deciduous forest (Tennessee) over one year

Applied Geochemistry, 2008

This study focused on the development of a seasonal data set of the Hg air/surface exchange over soils associated with low Hg containing surfaces in a deciduous forest in the southern USA. Data were collected every month for 11 months in 2004 within Standing Stone State Forest in Tennessee using the dynamic flux chamber method. Mercury air/surface exchange associated with the litter covered forest floor was very low with the annual mean daytime flux being 0.4 ± 0.5 ng m À2 h À1 (n = 301). The daytime Hg air/surface exchange over the year oscillated between emission (81% of samples with positive flux) and deposition (19% of samples with negative flux). A seasonal trend of lower emission in the spring and summer (closed canopy) relative to the fall and winter (open canopy) was observed. Correlations were found between the air/surface exchange and certain environmental factors on specific days sampled but not collectively over the entire year. The very low magnitude of Hg air/surface exchange as observed in this study suggests that an improved methodology for determining and reporting emission fluxes is needed when the values of fluxes and chamber blanks are both very low and comparable. This study raises questions and points to a need for more research regarding how to scale the Hg air/surface exchange for surfaces with very low emissions.