Biomass Characterization and Allometric Model Development for Aboveground Carbon Stock of Benguet Pine (Pinus kesiya) (original) (raw)

Allometric equations to assess biomass, carbon and nitrogen content of black pine and red pine trees in southern Korea

iForest - Biogeosciences and Forestry

Biogeosciences and Forestry Biogeosciences and Forestry Allometric equations to assess biomass, carbon and nitrogen content of black pine and red pine trees in southern Korea Choonsig Kim (1) , Byung Oh Yoo (2) , Su Young Jung (2) , Kwang Soo Lee (2) A total of 74 Japanese black pine (Pinus thunbergii Parl.) and red pine (P. densiflora S. et Z.) trees were destructively sampled in southern Korea, which is severely affected by pine wilt disease (PWD). Species-specific allometric equations were developed to estimate the biomass, carbon (C) and nitrogen (N) content of the tree components (i.e., stem wood, stem bark, branches, needles and roots) based on the diameter at breast height (DBH) and stem diameter at 20 cm aboveground (D20). The C concentrations of the various tree components were not correlated with DBH (P > 0.05), except for the C concentration in the stem bark (r =-0.29, P < 0.05) of the black pine and the branches (r = 0.40, P < 0.05) of the red pine. However, the N concentrations in the stem wood (r =-0.53, P < 0.05), stem bark (r =-0.37, P < 0.05) and branches (r =-0.40, P < 0.05) of the black pine were negatively correlated with DBH. The mean C concentrations of the tree components were not significantly different between the black pine and red pine, except for the stem bark, whereas the mean N concentrations were significantly lower in the black pine than in the red pine, except for the stem bark. The allometric equations developed for the biomass, C and N content for all the tree components were significant (P < 0.05). The adjusted coefficient of determination (adj. R 2) of the DBH allometric equations ranged from 0.66 to 0.97, while the coefficients for the D20 equations were between 0.66 and 0.95. Black pines consistently exhibited more biomass, C and N content in the tree components compared with the red pines with similar DBH or D20. These results suggest that the accuracy of estimates for biomass, C and N stocks in black pine and red pine forests could be improved by specific allometric equations for PWD-disturbed forests.

Biomass allometry and carbon factors for a Mediterranean pine (Pinus pinea L.) in Portugal

2010

Forests play an important role in the global carbon balance because they offset a large portion of the carbon dioxide emitted through human activities. Accurate estimates are necessary for national reporting of greenhouse gas inventories, carbon credit trading and forest carbon management but in Portugal reliable and accessible forest carbon measurement methodologies are still lacking for some species. The objective of this study was to provide forest managers with a comprehensive database of carbon factors and equations that allows estimating stand-level carbon stocks in Pinus pinea L. (P. pinea), regardless of the tree inventory information available. We produced aboveground biomass and stem volume equations, biomass expansion factors (BEF) by component as well as wood basic density (WBD) and component carbon fraction in biomass. A root-to-shoot ratio is also presented using data from trees in which the root system was completely excavated. We harvested 53 trees in centre and south Portugal covering different sizes (6.5 to 56.3 cm), ages (10 to 45 years) and stand densities (20 to 580 trees ha -1 ). The results indicate that aboveground allometry in P. pinea is not comparable with other pines and varies considerably with stand characteristics, highlighting the need to develop stand-dependent factors and equations for local or regional carbon calculations. BEF aboveground decreases from open (1.33 ± 0.03 Mg m -3 ) to closed stands (1.07 ± 0.01 Mg m -3 ) due to a change in biomass allocation pattern from stem to branches. Average WBD was 0.50 ± 0.01 Mg m -3 but varies with tree dimensions and the root-to-shoot ratio found was 0.30 ± 0.03. The carbon fraction was statistically different from the commonly used 0.5 factor for some biomass components. The equations and factors produced allow evaluating carbon stocks in P. pinea stands in Portugal, contributing to a more accurate estimation of carbon sequestered by this forest type.

Allometric equations to predict the total above-ground biomass of radiata pine trees

Annals of Forest Science, 2010

• Radiata pine (Pinus radiata D. Don) is the main exotic plantation tree species grown in New Zealand for wood production and as such represents a significant component of the terrestrial carbon cycle. • Using data for 637 trees collected in 13 different studies, a series of equations was developed that enable the total above-ground biomass of individual radiata pine trees to be estimated from information about height and diameter. A mixed-effects modelling approach was used when fitting these equations in order to account for random fluctuations in model parameters between studies due to site and methodological differences. Linear models were fitted to logarithmically transformed data, while weighted linear and non-linear models were fitted to data on the original arithmetic scale. • Based on a modified likelihood statistic (Furnival's Index of Fit), models fitted to transformed data were found to perform slightly better than weighted models fitted to data on the original arithmetic scale; however, the latter do not require a means for correcting for the bias that occurs when estimates of biomass obtained from transformed models are back transformed to the original scale. • Recommendations for further development of these models including additional data collection priorities are given.

Allometric equations for total aboveground dry biomass and carbon content of Pinus occidentalis trees

Madera y Bosques

Ecuaciones precisas de biomasa son necesarios para cuantificar el potencial de almacenamiento de carbono en el contexto del cambio climático y para una gestión forestal sostenible, sin embargo, siempre ha existido falta de información sobre el contenido de biomasa o carbono para árboles naturales de Pinus occidentalis. Por tanto, los objetivos del estudio fueron desarrollar modelos alométricos específicos de biomasa total aérea para P. occidentalis y evaluar la variación en la concentración de carbono entre los tejidos aéreos empleando análisis químico. Las modelos fueros desarrollados empleando técnicas de regresión lineal y no lineal y evaluados con base en criterios de bondad de ajuste. Dos modelos alométricos produjeron estadísticas de bondad de ajuste similares: El modelo 4, ajustado por mínimos cuadrados no lineales ponderados, y el modelo 6, ajustado mediante un componente de varianza, aplicando el método de máxima verosimilitud, . La concentración de carbono promedio fue ma...

ALLOMETRIC EQUATIONS FOR BELOWGROUND BIOMASS AND CARBON CONTENT OF Pinus patula SCHL. et CHAM

Revista Fitotecnia Mexicana

Allometric equations are essential tools for estimating biomass and carbon fixation in forest ecosystems. Published information is limited for belowground biomass of forests, mainly due to the methodological challenges of its determination. With the aim of contributing to the study of this important carbon store, in the present study allometric equations were developed for the estimation of belowground biomass of Pinus patula Schiede ex Schldl. et Cham. in its main natural distribution area: the states of Hidalgo, Puebla and Veracruz, Mexico. Seven Pinus patula trees with varying dimensions were selected and torn down at various sites; their diameter at breast height (DBH), total height (H), and crown diameter (CD) were measured. The totality of fine and coarse roots was extracted; the aboveground biomass was quantified by census, by sampling or by means of an allometric equation. Equations were developed for belowground biomass and carbon content, both total and by components, aswe...

Allometric equations to estimate aboveground and belowground biomass of Pinus patula Schiede ex Schltdl. Cham

Forest Science and Technology

The estimation of tree biomass serves as a parameter of forest productivity; in addition, it is a method to estimate carbon fixation and storage. Studies on total biomass that include the belowground component for the Pinus genus are scarce in Mexico due to the difficulty and high costs for its quantification. In this study, allometric models were fitted to estimate the total biomass of Pinus patula Schiede ex Schltdl. & Cham., from the pine-oak forest of Ixtl an de Ju arez, Oaxaca, for which a destructive analysis was made of 25 trees distributed in five diameter classes, classifying the biomass by components (root, stem, branches and foliage). With the component biomass data, different models were fitted by nonlinear regression techniques, using the diameter at breast height (D, cm) and the total height (TH, m) as independent variables. The model with the best fit was an exponential type y ¼ e ðÀb 0 þb 1 ln ðDÂTHÞÞ : In this study, it was observed that the studied species stores 22.62% of the biomass in the root, 69.61% in the stem, 5.67% in the branches and 2.11%, in the foliage. The models proposed in this study allow the estimation of total biomass and by structural component independently and additively. Its use is recommended in trees of P. patula, in the range of 5 to 25 cm of diameter at breast height, in forests with similar growing conditions.

Formulating allometric equations for estimating biomass and carbon stock in small diameter trees

2011

Biomass and carbon sequestration rate of a young (four year old) mixed plantation of Dalbergia sissoo Roxb., Acacia catechu Willd., and Albizia lebbeck Benth. growing in Terai region (a level area of superabundant water) of central Himalaya was estimated. The plantation is seed sown in the rainy season of year 2004 and spread over an area of 44 ha. Allometric equations for both above and below ground components were developed for three tree species. The density of trees in the plantation was 1322 trees ha −1 The diameters of trees were below 10 cm. Five diameter classes were defined for D. sissoo and A. catechu and 3 for A. lebbeck. 5 trees were harvested in each diameter class. Individual tree allometry was exercised for developing the allometric equations relating tree component (low and above ground) biomass to d.b.h. Post analysis equations were highly significant (P > 0.001) for each component of all species. In the plantation Holoptelia integrifolia Roxb. (Family Ulmaceae) has been reduced to shrub form because of frost. Only the aboveground biomass of H. integrifolia and other shrubs were estimated by destructive harvesting method. Herbaceous forest floor biomass and leaf litter fall were also estimated. The total forest vegetation biomass was 10.86 Mg ha −1 in 2008 which increased to 19.49 Mg ha −1 in 2009. The forest is sequestering carbon at the rate of 4.32 Mg ha −1 yr −1 .

Allometric models to estimate biomass organic carbon stock in forest vegetation

Journal of forestry research, 2008

A study was conducted in the forest area of Chittagong (South) Forest Division, Chittagong, Bangladesh for developing allometric models to estimate biomass organic carbon stock in the forest vegetation. Allometric models were tested separately for trees (divided into two DBH classes), shrubs, herbs and grasses. Model using basal area alone was found to be the best predictor of biomass organic carbon stock in trees because of high coefficient of determination (r 2 is 0.73697 and 0.87703 for > 5 cm to ≤ 15 cm and > 15 cm DBH (diameter at breast height) rang, respectively) and significance of regression (P is 0.000 for each DBH range) coefficients for both DBH range. The other models using height alone; DBH alone; height and DBH together; height, DBH and wood density; with liner and logarithmic relations produced relatively poor coefficient of determination. The allometric models for dominant 20 tree species were also developed separately and equation using basal area produced higher value of determination of coefficient. Allometric model using total biomass alone for shrubs, herbs and grasses produced higher value of determination of coefficient and significance of regression coefficient (r 2 is 0.87948 and 0.87325 for shrubs, herbs and grasses, respectively and P is 0.000 for each). The estimation of biomass organic carbon is a complicated and time consuming research. The allometric models developed in the present study can be utilized for future estimation of organic carbon stock in forest vegetation in Bangladesh as well as other tropical countries of the world.

Biomass models to estimate carbon stocks for hardwood tree species | Ecuaciones para la estimación de biomasa de frondosas en España

Forest Systems, 2012

To estimate forest carbon pools from forest inventories it is necessary to have biomass models or biomass expansion factors. In this study, tree biomass models were developed for the main hardwood forest species in Spain: Alnus glutinosa, Castanea sativa, Ceratonia siliqua, Eucalyptus globulus, Fagus sylvatica, Fraxinus angustifolia, Olea europaea var. sylvestris, Populus x euramericana, Quercus canariensis, Quercus faginea, Quercus ilex, Quercus pyrenaica and Quercus suber. Different tree biomass components were considered: stem with bark, branches of different sizes, above and belowground biomass. For each species, a system of equations was fitted using seemingly unrelated regression, fulfilling the additivity property between biomass components. Diameter and total height were explored as independent variables. All models included tree diameter whereas for the majority of species, total height was only considered in the stem biomass models and in some of the branch models. The comparison of the new biomass models with previous models fitted separately for each tree component indicated an improvement in the accuracy of the models. A mean reduction of 20% in the root mean square error and a mean increase in the model efficiency of 7% in comparison with recently published models. So, the fitted models allow estimating more accurately the biomass stock in hardwood species from the Spanish National Forest Inventory data.