High-recall calibration monitoring for stereo cameras (original) (raw)
Cameras are the prevalent sensors used for perception in autonomous robotic systems, but their initial calibration may degrade over time due to dynamic factors. This may lead to a failure of downstream tasks, such as simultaneous localization and mapping (SLAM) or object recognition. Hence, a computationally lightweight process that detects the decalibration is of interest. We describe a modification of StOCaMo, an online calibration monitoring procedure for a stereoscopic system. The method uses robust kernel correlation based on epipolar constraints; it validates extrinsic calibration parameters on a single frame with no temporal tracking. In this paper, we present a modified StOCaMo with an improved recall rate on small decalibrations through a confirmation technique based on resampled variance. With fixed parameters learned on a realistic synthetic dataset from CARLA, StOCaMo and its proposed modification were tested on multiple sequences from two realworld datasets: KITTI and EuRoC MAV. The modification improved the recall of StOCaMo by 25 % (to 91 % and 82 %, respectively), and the accuracy by 12 % (to 94.7 % and 87.5 %, respectively), while labeling at most one-third of the input data as uninformative. The upgraded method achieved the rank correlation between StOCaMo V-index and downstream SLAM error of 0.78 (Spearman).