Electrochemical Zero-Mode Waveguide Studies of Single Enzyme Reactions (original) (raw)

2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), 2018

Abstract

Because electron transfer reactions are fundamental to life processes, such as respiration, vision, and energy catabolism, it is critically important to understand the relationship between functional states of individual redox enzymes and the macroscopically observed phenotype, which results from averaging over all copies of the same enzyme. To address this problem, we have developed a new technology, based on a bifunctional nanoelectrochemical-nanophotonic architecture - the electrochemical zero mode waveguide (E-ZMW) - that can couple biological electron transfer reactions to luminescence, making it possible to observe single electron transfer events in redox enzymes. Here we describe E-ZMW architectures capable of supporting potential-controlled redox reactions with single copies of the oxidoreductase enzyme, glutathione reductase, GR, and extend these capabilities to electron transfer events where reactive oxygen species are synthesized within the ~ 100 zL volume of the nanopore.

Paul Bohn hasn't uploaded this paper.

Let Paul know you want this paper to be uploaded.

Ask for this paper to be uploaded.