Effect of Underground Coal Mining on the Regional Soil Organic Carbon Pool in Farmland in a Mining Subsidence Area (original) (raw)

2019, Sustainability

The soil organic carbon (SOC) pool in farmland is changing rapidly due to human activities, thereby greatly affecting the regional and global environment, as well as influencing soil fertility and crop yields. The present study investigated the effects of underground coal mining on the regional SOC pool in farmland in the Jiuli Mining Area of Xuzhou City in China as a typical coal mining region based on field sampling, chemical analysis, model construction, and spatial analysis using the software of ArcGIS. The results showed that in the mining subsidence area, spatial variations in the SOC content and soil bulk density were mainly caused by structural factors (mining subsidence, subsidence waterlogging, and other structural factors due to coal mining) at a regional scale. SOC storage in farmland soil decreased sharply in non-waterlogged subsidence farmland and seasonally waterlogged subsidence farmland in the areas with mining, whereas the SOC storage increased in waterlogged wetla...

Effect of Environmental Factors on Soil Nutrient Loss under Conditions of Mining Disturbance in a Coalfield

Forests, 2021

Underground coal mining can result in land deformation (e.g., land subsidence and ground fissures), and may consequently change the soil nutrients. Soil organic matter (SOM), total nitrogen (TN), and available phosphorus (AP) are critical indicators of soil fertility and eco-restoration in mining areas. In this study, soil samples (depth: 0–20 cm) were collected twice from 20 sampling points in pre-mining and post-mining in the No.12 panel of Caojiatan coalfield, in the Loess Plateau of China. SOM, TN, and AP in soil samples were measured, and the nutrient loss was evaluated. Ten environmental factors affecting soil nutrient loss were identified from a 5-m resolution digital elevation map (DEM). The paired t-test was utilized to evaluate the differences between SOM, TN, and AP in pre-mining and post-mining soil. The mechanisms of the effects of environmental factors on soil nutrient loss were revealed based on multiple linear regression, redundancy analysis (RDA), and the random for...

Long-Term Application of Organic Wastes Improves Soil Carbon and Structural Properties in Dryland Affected by Coal Mining Activity

Sustainability

Organic wastes have a positive impact on soil physical and chemical properties in the agroecosystems. However, its main effects on soil organic carbon (SOC) or total organic carbon, TOC (SOC and coal-C) contents as well as their effects on soil physico-chemical properties are still unclear. Two types of organic wastes (maize straw and manure) were utilized in dryland affected by mining activities to quantify their relative effect on soil physico-chemical properties. Regression analysis was used to assess the relationship between the soil physical properties, SOC, and TOC as well as their respective contributions to improving these properties. Treatments included control (CK), straw (S), low manure (LM), medium manure plus straw (S-MM), and high manure plus straw (S-HM). The results showed that SOC, soil bulk density, mean weight diameter (MWD), soil total porosity, soil penetration resistance, saturated hydraulic conductivity, and soil infiltration rate were strongly influenced by t...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.