Glaucoma Detection Using AI (original) (raw)
Related papers
Machine learning classifiers for detection of glaucoma
IAES International Journal of Artificial Intelligence (IJ-AI)
Glaucoma is a disease that affects the optic nerve. This disease, over a period of time, can lead to loss of vision. Which is known as ‘silent thief of sight’. There are several methods in which the disease can be treated, if detected at an early stage It is not possible for any technology, including artificial intelligence, to replace a doctor. However, it is possible to develop a model based on several classical image processing algorithms, combined with artificial intelligence that can detect onset of glaucoma based on certain parameters of the retinal fundus. This model would play an important role in early detection of the disease and assist the doctor. The traditional methods to detect glaucoma, as efficient as they may be, are usually expensive, a machine learning approach to diagnose from fundus images and accurately classify its severity can be considered to be efficient. Here we propose support vector machine (SVM) method to segregate, train the models using a high-end gra...
A Review on Glaucoma Disease Detection Using Computerized Techniques
IEEE Access, 2021
Glaucoma is an incurable eye disease that leads to slow progressive degeneration of the retina. It cannot be fully cured, however, its progression can be controlled in case of early diagnosis. Unfortunately, due to the absence of clear symptoms during the early stages, early diagnosis are rare. Glaucoma must be detected at early stages since late diagnosis can lead to permanent vision loss. Glaucoma affects the retina by damaging the Optic Nerve Head (ONH). Its diagnosis is dependent on the measurements of Optic Cup (OC) and Optic Disc (OD) in the retina. Computer vision techniques have been shown to diagnose glaucoma effectively and correctly with little overhead. These techniques measure OC and OC dimensions using machine learning based classification and segmentation algorithms. This article aims to provide a comprehensive overview of various existing techniques that use machine learning to detect and diagnose glaucoma based on fundus images. Readers would be able to understand the challenges glaucoma presents from an image processing and machine learning standpoint and will be able to identify gaps in current research. INDEX TERMS Glaucoma, convolutional neural networks (CNN), diabetic retinopathy, cup-to-disc ratio (CDR), optic nerve head (ONH), optic cup (OC), optic disc (OD), intra ocular pressure (IOP).
Glaucoma Detection Using Image Processing and Supervised Learning for Classification
Journal of Healthcare Engineering, 2022
A difficult challenge in the realm of biomedical engineering is the detection of physiological changes occurring inside the human body, which is a difficult undertaking. At the moment, these irregularities are graded manually, which is very difficult, time-consuming, and tiresome due to the many complexities associated with the methods involved in their identification. In order to identify illnesses at an early stage, the use of computer-assisted diagnostics has acquired increased attention as a result of the requirement of a disease detection system. The major goal of this proposed work is to build a computer-aided design (CAD) system to help in the early identification of glaucoma as well as the screening and treatment of the disease. The fundus camera is the most affordable image analysis modality available, and it meets the financial needs of the general public. The extraction of structural characteristics from the segmented optic disc and the segmented optic cup may be used to ...
Glaucoma patient screening from online retinal fundus images via Artificial Intelligence
2021
ObjectivesTo design and evaluate a novel automated glaucoma classifier from retinal fundus images.MethodsWe designed a novel Artificial Intelligence (AI) automated tool to detect glaucoma from retinal fundus images. We then downloaded publicly available retinal fundus image datasets containing healthy patients and images with verified glaucoma labels. Two thirds of the images were used to train the classifier. The remaining third of the images was used to create several cross-validation evaluation sets with a realistic glaucoma prevalence, to evaluate the classifier’s performance in a screening scenario.Results10,658 retinal fundus images from seven different sources were found and downloaded. They were randomly divided into 7,106 for training and 3,551 for validation. Glaucoma prevalence was 24%. Using the validation set, we created 50 random sets of 1,000 images with a 5% glaucoma prevalence. On these sets, the classifier reached a detection rate of 84.1% (CI 95=+-1.1%) and 95.8% ...
Automatic detection of glaucoma via fundus imaging and artificial intelligence: A review
Survey of Ophthalmology
Glaucoma is a leading cause of irreversible vision impairment globally and cases are continuously rising worldwide. Early detection is crucial, allowing timely intervention which can prevent further visual field loss. To detect glaucoma, examination of the optic nerve head via fundus imaging can be performed, at the centre of which is the assessment of the optic cup and disc boundaries. Fundus imaging is non-invasive and low-cost; however, the image examination relies on subjective, timeconsuming, and costly expert assessments. A timely question to ask is can artificial intelligence mimic glaucoma assessments made by experts. Namely, can artificial intelligence automatically find the boundaries of the optic cup and disc (providing a so-called segmented fundus image) and then use the segmented image to identify glaucoma with high accuracy. We conducted a comprehensive review on artificial intelligence-enabled glaucoma detection frameworks that produce and use segmented fundus images. We found 28 papers and identified two main approaches: 1) logical rule-based frameworks, based on a set of simplistic decision rules; and 2) machine learning/statistical modelling based frameworks. We summarise the state-of-art of the two approaches and highlight the key hurdles to overcome for artificial intelligence-enabled glaucoma detection frameworks to be translated into clinical practice.
Computer-Aided Diagnostics and Pattern Recognition: Automated Glaucoma Detection
Glaucoma is one of the major causes for blindness with a high rate of unreported cases. To reduce this number, screening programs are performed. However, these are characterized by a high workload for manual and cost-intensive assessment. Computer-aided diagnostics (CAD) to perform an automated pre-exclusion of normals might help to improve program's efficiency. This chapter reviews and discusses recent advances in the development of pattern recognition algorithms for automated glaucoma detection based on structural retinal image data. Two main methodologies for glaucoma detection are introduced: (i) structuredriven approaches that mainly rely on the automated extraction of specific medically relevant indicators, while (ii) data-driven techniques perform a generic machine-learning approach on entire image data blobs. Both approaches show a reasonable and comparable performance although they rely on different basic assumptions. A combination of these might further improve CAD for a more efficient and cost-sensitive workflow as a major proportion of normals will be excluded from unnecessary detailed investigations.
Efficient Computer-Aided Techniques to Detect Glaucoma
2020
A survey of the World Health Organization has revealed that retinal eye disease Glaucoma is the second leading cause for blindness worldwide. It is a disease which will steals the vision of the patient without any warning or symptoms. About half of the World Glaucoma Patients are estimated to be in Asia. Hence, for social and economic reasons, Glaucoma detection is necessary in preventing blindness and reducing the cost of surgical treatment of the disease. The objective of the chapter is to predict and detect Glaucoma efficiently using image processing techniques. We have developed an efficient computer-aided Glaucoma detection system to classify a fundus image as either normal or glaucomatous image based on the structural features of the fundus image such as cup-to-disc ratio (CDR), rim-to-disc ratio (RDR), superior and inferior neuroretinal rim thicknesses, vessel structure-based features, and distribution of texture features in the fundus images. An automated clinical support sy...
Developing a Real Time Algorithm for Diagnosing Glaucoma
ICTACT Journal on Image and Video Processing
A Glaucoma is a group of eye diseases causing optic nerve damage and if not detected at an early stage it may cause permanent blindness. Glaucoma progression precedes some structural damage to the retina are the symptoms of Glaucoma. Manually, it is diagnosed by examination of size, structure, shape, and color of optic disc and optic cup and retinal nerve fiber layer (RNFL), which suffer from the subjectivity of human due to experience, fatigue factor etc., and with the widespread of higher quality medical imaging techniques, there are increasing demands for computer-aided diagnosis (CAD) systems for glaucoma detection, because the human mistakes, other retinal diseases like Age-related Macular Degeneration (AMD) affecting in early glaucoma detection, and the existing medical devices like Optical Coherence Tomography (OCT) and Heidelberg Retinal Tomography (HRT) are expensive. This paper proposes a novel algorithm by extract 13 shape features from disc and cup, extract 25 texture features from RNFL(retinal nerve fiber layer) using gray level co-occurrence method and Tamara algorithm and 3 color features for each of disc and cup and RNFL. Next, best features selected using two methods, first method is the student t-test and the second method applied was the Sequential Feature Selection (SFS) to introduce the best 6 features. The evaluation of proposed algorithm is performed using a RIM_ONE and DRISHTI-GS databases, the average accuracy 97%, maximize area under curve (AUC) 0.99, specificity 96.6% and sensitivity 98.4% using support vector machine classifier (SVM). Future works suggested to design a complete, automated system not just diagnose glaucoma but calculate the progress of the disease too.
Journal of Imaging, 2022
Artificial intelligence techniques are now being applied in different medical solutions ranging from disease screening to activity recognition and computer-aided diagnosis. The combination of computer science methods and medical knowledge facilitates and improves the accuracy of the different processes and tools. Inspired by these advances, this paper performs a literature review focused on state-of-the-art glaucoma screening, segmentation, and classification based on images of the papilla and excavation using deep learning techniques. These techniques have been shown to have high sensitivity and specificity in glaucoma screening based on papilla and excavation images. The automatic segmentation of the contours of the optic disc and the excavation then allows the identification and assessment of the glaucomatous disease’s progression. As a result, we verified whether deep learning techniques may be helpful in performing accurate and low-cost measurements related to glaucoma, which m...
Photonics
Recent developments in the use of artificial intelligence in the diagnosis and monitoring of glaucoma are discussed. To set the context and fix terminology, a brief historic overview of artificial intelligence is provided, along with some fundamentals of statistical modeling. Next, recent applications of artificial intelligence techniques in glaucoma diagnosis and the monitoring of glaucoma progression are reviewed, including the classification of visual field images and the detection of glaucomatous change in retinal nerve fiber layer thickness. Current challenges in the direct application of artificial intelligence to further our understating of this disease are also outlined. The article also discusses how the combined use of mathematical modeling and artificial intelligence may help to address these challenges, along with stronger communication between data scientists and clinicians.