Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities (original) (raw)

Abstract

Progress in urban climate science is severely restricted by the lack of useful information that describes aspects of the form and function of cities at a detailed spatial resolution. To overcome this shortcoming we are initiating an international effort to develop the World Urban Database and Access Portal Tools (WUDAPT) to gather and disseminate this information in a consistent manner for urban areas worldwide. The first step in developing WUDAPT is a description of cities based on the Local Climate Zone (LCZ) scheme, which classifies natural and urban landscapes into categories based on climate-relevant surface properties. This methodology provides a culturally-neutral framework for collecting OPEN ACCESS ISPRS Int. J. Geo-Inf. 2015, 4 200

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (38)

  1. Mills, G. Cities as agents of global change. Int. J. Climatol. 2007, 27, 1849-1857.
  2. Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769-779.
  3. Ching, J.K.S. A perspective on urban canopy layer modeling for weather, climate and air quality applications. Urban. Clim. 2013, 3, 13-39.
  4. Satterthwaite, A.D.E.; Aragón-Durand, F.; Corfee-Morlot, J.; Kiunsi, M.; Pelling, M.; Roberts, D.C.; Solecki, W. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: http://www.ipcc.ch/pdf/ assessment-report/ar5/wg2/WGIIAR5-FrontMatterA_FINAL.pdf (accessed on 4 December 2014).
  5. Weng, Q. Global Urban Monitoring and Assessment through Earth Observation; CRC Press: Boca Raton, FL, USA, 2014.
  6. Esch, T.; Thiel, M.; Schenk, A.; Roth, A.; Muller, A.; Dech, S. Delineation of urban footprints from Terrasar-X data by analyzing speckle characteristics and intensity information. IEEE Trans. Geosci. Remote Sens. 2010, 48, 905-916.
  7. Gamba, P.; Aldrighi, M.; Stasolla, M. Robust extraction of urban area extents in HR and VHR SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 27-34.
  8. Esch, T.; Marconcini, M.; Felbier, A.; Roth, A.; Heldens, W.; Huber, M.; Schwinger, M.; Taubenbock, H.; Muller, A.; Dech, S. Urban footprint processor-Fully automated processing chain generating settlement masks from global data of the TanDEM-X mission. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1617-1621.
  9. Miyazaki, H.; Shao, X.; Iwao, K.; Shibasaki, R. An automated method for global urban area mapping by integrating ASTER satellite images and GIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1004-1019.
  10. Pesaresi, M.; Guo, H.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Halkia, M.; Kauffmann, M.; Kemper, T.; Lu, L. A Global Human Settlement Layer from optical HR/VHR RS data: Concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2102-2131.
  11. Ching, J.; Mills, G.; Feddema, J.J.; Oleson, K.; See, L.; Stewart, I.D.; Bechtel, B.; Chen, F.; Wang, X.; Neophytou, M.K.A.; et al. WUDAPT: Facilitating Advanced Urban Canopy Modeling for Weather, Climate and Air Quality Applications. Available online: https://ams.confex.com/ams/ 94Annual/webprogram/Paper236443.html (accessed on 4 December 2014).
  12. See, L.; Bechtel, B.; Ching, J.K.S.; Feddema, J.J.; Foley, M.; Fritz, S.; Masson, V.; Mills, G.; Perger, C.; Stewart, I.D. Developing a community-based worldwide urban database of morphology and materials using remote sensing and crowdsourcing for improved urban climate/UHI modeling. Lausanne 2015, submitted.
  13. Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879-1900.
  14. Bechtel, B.; Daneke, C. Classification of local climate zones based on multiple earth observation data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1191 -1202.
  15. Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 2011, 31, 200-217.
  16. Ndetto, E.L.; Matzarakis, A. Urban Atmospheric Environment and Human Biometeorological Studies in Dar es Salaam, Tanzania. Available online: http://link.springer.com/article/ 10.1007/s11869-014-0261-z (accessed on 4 December 2014).
  17. Fenner, D.; Meier, F.; Scherer, D.; Polze, A. Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001-2010. Urban. Clim. 2014, 10, 308-331.
  18. Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the "local climate zone" scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062-1080.
  19. Alexander, P.J.; Mills, G. Local climate classification and Dublin's urban heat island. Atmosphere 2014, 5, 755-774.
  20. Lelovics, E.; Unger, J.; Gl, T.; Gl, C.V. Design of an urban monitoring network based on local climate zone mapping and temperature pattern modelling. Clim. Res. 2014, 60, 51-62.
  21. Gamba, P.; Lisini, G.; Liu, P.; Du, P.; Lin, H. Urban climate zone detection and discrimination using object-based analysis of VHR scenes. In Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 7-9 May 2012.
  22. Wurm, M.; Taubenbock, H.; Roth, A.; Dech, S. Urban structuring using multisensoral remote sensing data: By the example of the German cities Cologne and Dresden. In Proceedings of Urban Remote Sensing Event, 2009 Joint, Shanghai, China, 20-22 May 2009; pp. 1-8.
  23. Heiden, U.; Heldens, W.; Roessner, S.; Segl, K.; Esch, T.; Mueller, A. Urban structure type characterization using hyperspectral remote sensing and height information. Landsc. Urban Plan. 2012, 105, 361-375.
  24. Walde, I.; Hese, S.; Berger, C.; Schmullius, C. From land cover-graphs to urban structure types. Int. J. Geogr. Inf. Sci. 2014, 28, 584-609.
  25. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32.
  26. Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335-344.
  27. Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2-10.
  28. Huttner, S.; Bruse, M.; Dostal, P. Using ENVI-Met to Simulate the Impact of Global Warming on the Microclimate in Central European Cities. Available online: http://envi-met.net/documents/ papers/Huttner_etal_2008.pdf (accessed on 4 December 2014).
  29. Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273-288.
  30. Jackson, T.L.; Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Bauer, J.T. Parameterization of urban characteristics for global climate modeling. Ann. Assoc. Am. Geogr. 2010, 100, 848-865.
  31. Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230-244.
  32. Knight, E.J.; Kvaran, G. Landsat-8 operational land imager design, characterization and performance. Remote Sens. 2014, 6, 10286-10305.
  33. Conrad, O. SAGA. Aufbau, Funktionsweise und Anwendung eines Systems für geowissenschaftiche Analysen; Göttingen, 2006. Available online: http://ediss.uni-goettingen.de/bitstream/handle/ 11858/00-1735-0000-0006-B26C-6/conrad.pdf?sequence=1 (accessed on 4 December 2014).
  34. Köthe, U. Generische Programmierung für die Bildverarbeitung; BoD-Books on Demand: Hamburg, Germany, 2000.
  35. Gorelick, N. Google Earth Engine. Available online: http://adsabs.harvard.edu/abs/2012AGUFM. U31A.04G (accessed on 4 December 2014).
  36. Van der Kwast, J.; Van de Voorde, T.; Canters, F.; Uljee, I.; Van Looy, S.; Engelen, G. Inferring urban land use using the optimised spatial reclassification kernel. Environ. Model. Softw. 2011, 26, 1279-1288.
  37. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2-16.
  38. Ching, J.; Brown, M.; McPherson, T.; Burian, S.; Chen, F.; Cionco, R.; Hanna, A.; Hultgren, T.; Sailor, D.; Taha, H.; et al. National urban database and access portal tool. Bull. Am. Meteorol. Soc. 2009, 90, 1157-1168.