Electromagnetic pulse (EMP) radiation by laser interaction with a solid H2 ribbon (original) (raw)
Related papers
Laser and Particle Beams, 2017
Measurements are reported of the target neutralization current, the target charge, and the tangential component of the magnetic field generated as a result of laser–target interaction by pulses with the energy in the range of 45–92 mJ on target and the pulse duration from 39 to 1000 fs. The experiment was performed at the Eclipse facility in CELIA, Bordeaux. The aim of the experiment was to extend investigations performed for the thick (mm scale) targets to the case of thin (μm thickness) targets in a way that would allow for a straightforward comparison of the results. We found that thin foil targets tend to generate 20–50% higher neutralization current and the target charge than the thick targets. The measurement of the tangential component of the magnetic field had shown that the initial spike is dominated by the 1 ns pulse consistent with the 1 ns pulse of the neutralization current, but there are some differences between targets of different types on sub-ns scale, which is an e...
Interaction of an ultrashort electromagnetic pulse with a molecular hydrogen ion
Technical Physics Letters, 2009
Analytical expressions that describe the spectrum of reemission during the interaction of an ultrashort electromagnetic pulse with a molecular hydrogen ion are obtained. The role of the orientation of the axis of the molecular ion during this interaction is studied. It is shown that the spectra of reemitted pho tons strongly depend on the orientation of molecular targets.
Electromagnetic pulse generation in laser-proton acceleration from conductive and dielectric targets
Plasma Physics and Controlled Fusion, 2020
Laser-plasma interactions at high intensities are often accompanied by emission of a strong electromagnetic pulse (EMP) interfering with particle detectors or other electronic equipment. We present experimental evidence for significant differences in noise amplitudes in laser-proton acceleration from aluminium as compared to mylar target foils. Such dissimilarities have been consistently observed throughout two series of measurements indicating that, under otherwise identical conditions, the target conductivity is the principal parameter related to EMP generation. In addition, the lateral size of the target foils correlates with the absolute noise levels. A frequency analysis combined with numerical simulations allows for an identification of several sources of radiofrequency emission in the MHz-GHz regime. Further, the temporal evolution of single frequencies on the nanosecond scale provides information on distinct excitation mechanisms.
Strong electromagnetic pulses generated in laser-matter interactions with 10TW-class fs laser
EPJ Web of Conferences, 2018
The results of an experiment on the generation of electromagnetic pulses (EMP) in the interaction of 10TW fs pulses with thick (mm scale) and thin foil (µm scale) targets are described. Such pulses, with frequencies in the GHz range, may pose a threat to safe and reliable operation of high-power, high-intensity laser facilities. The main point of the experiment is to investigate the fine temporal structure of such pulses using an oscilloscope capable of measurements at very high sampling rate. It is found that the amazing reproducibility of such pulses is confirmed at this high sampling rate. Furthermore, the differences between the EMP signals generated from thick and thin foil targets are clearly seen, which indicates that besides electric polarization of the target and the target neutralization current there may be other factors essential for the EMP emission.
Laser produced electromagnetic pulses: generation, detection and mitigation
High Power Laser Science and Engineering
This paper provides an up-to-date review of the problems related to the generation, detection and mitigation of strong electromagnetic pulses created in the interaction of high-power, high-energy laser pulses with different types of solid targets. It includes new experimental data obtained independently at several international laboratories. The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce. The major emphasis is put on the GHz frequency domain, which is the most damaging for electronics and may have important applications. The physics of electromagnetic emissions in other spectral domains, in particular THz and MHz, is also discussed. The theoretical models and numerical simulations are compared with the results of experimental measurements, with special attention to the methodology of measurements and complementary diagnostics. Understanding the underlying physical processe...
EPJ Web of Conferences, 2018
During the interaction of high intense laser pulse with solid target, a large amount of hot electrons is produced and a giant Electromagnetic Pulse (EMP) is generated due to the current flowing into the system target–target holder, as well as due to the escaping charged particles in vacuum. EMP production for different target materials is investigated inside and outside the target chamber, using monopole antenna, super wide-band microstrip antenna and Moebius antenna. The EMP consists in a fast transient magnetic field lasting hundreds of nanosecond with frequencies ranging from MHz to tens of GHz. Measurements of magnetic field and return target current in the range of kA were carried out by an inductive target probe (Cikhardt J. et al. Rev. Sci. Instrum. 85 (2014) 103507).
Contributions to Plasma Physics, 2016
In this paper, a two dimensional Particle In Cell‐Monte Carlo Collision simulation scheme is used to examine the THz generation via the interaction of high intensity ultra‐short laser pulses with an underdense molecular hydrogen plasma slab. The influences of plasma density, laser pulse duration and its intensity on the induced plasma current density and the subsequent effects on the generated THz signal characteristics are studied. It is observed that the induced current density in the plasma medium and THz spectral intensity are increased at the higher laser pulse intensities, laser pulse durations and plasma densities. Moreover, the generated THz electric field amplitude is reduced at the higher laser pulse durations. A wider frequency range for the generated THz signal is shown at the lower laser pulse durations and higher plasma densities. Additionally, it is found that the induced current density in hydrogen plasma medium is the dominant factor influencing the generation of TH...
Ionization of hydrogen targets by short laser pulses
We present a distorted-wave formulation of atomic ionization by short laser pulses based on Coulomb-Volkov states. The method is applied to atomic-hydrogen targets, for different interaction times and frequencies.
Characterisation and Modelling of Ultrashort Laser-Driven Electromagnetic Pulses
Scientific Reports
Recent advances on laser technology have enabled the generation of ultrashort (fs) high power (PW) laser systems. For such large scale laser facilities there is an imperative demand for high repetition rate operation in symbiosis with beamlines or end-stations. In such extreme conditions the generation of electromagnetic pulses (EMP) during high intense laser target interaction experiments can tip the scale for the good outcome of the campaign. The EMP effects are several including interference with diagnostic devices and actuators as well as damage of electrical components. The EMP issue is quite known in the picosecond (ps) pulse laser experiments but no systematic study on EMP issues at multi-Joule fs-class lasers has been conducted thus far. In this paper we report the first experimental campaign for EMP-measurements performed at the 200 TW laser system (VEGA 2) at CLPU laser center. EMP pulse energy has been measured as a function of the laser intensity and energy together with...