Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets (original) (raw)

Abstract

Linear and nonlinear variational inequality problems over a polyhedral convex set are analyzed parametrically. Robinson's notion of strong regularity, as a criterion for the solution set to be a singleton depending Lipschitz continuously on the parameters, is characterized in terms of a new "critical face" condition and in other ways. The consequences for complementarity problems are worked out as a special case. Application is also made to standard nonlinear programming problems with parameters that include the canonical perturbations. In that framework a new characterization of strong regularity is obtained for the variational inequality associated with the Karush-Kuhn-Tucker conditions.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (30)

  1. J.-P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9 (1984), 87-111.
  2. J. F. Bonnans, A. Sulem, Pseudopower expansion of solutions of generalized equations and constrained optimization problems, Mathe- matical Programming, 1995.
  3. J. M. Borwein, D. M. Zhuang, Verifiable necessary and sufficient conditions for openness and regularity of set-valued maps, J. Math. Anal. Appl. 134 (1988), 441-459.
  4. R. W. Cottle, Jong-Shi Pang, R. E. Stone, The linear comple- mentarity problem, Academic Press, Boston 1992.
  5. A. L. Dontchev, W. W. Hager, An inverse function theorem for set-valued maps, Proc. Amer. Math. Soc. 121 (1994), 481-489.
  6. A. L. Dontchev, W. W. Hager, Implicit functions, Lipschitz maps and stability in optimization, Math. of Oper. Res. 19 (1994), 753-768.
  7. B. C. Eaves, U. G. Rothblum, Relationship of properties of piece- wise affine maps over ordered fields, Linear Algebra and Appl. 132 (1990), 1-63.
  8. M. S. Gowda, On the continuity of the solution map in linear com- plementarity problems, SIAM J. Optimization 2 (1992), 619-634.
  9. M. S. Gowda, R. Sznajder, On the Lipschitz properties of poly- hedral multifunctions, preprint, Dept. of Math. and Stat., University of Maryland Baltimore County, November 1994.
  10. M. Hestenes, Calculus of Variations and Optimal Control Theory, Wiley, 1966.
  11. H. Th. Jongen, T. Möbert, J. Rückmann, K. Tammer, Implicit functions and sensitivity of stationary points, Linear Algebra and Appl. 95(1987), 97-109.
  12. H. Th. Jongen, D. Klatte, K. Tammer, Implicit functions and sensitivity of stationary points, Mathematical Programming 19 (1990), 123-138.
  13. D. Klatte, K. Tammer, Strong stability of stationary solutions and Karush-Kuhn-Tucker points in nonlinear optimization, Annals of Oper. Research 27 (1990), 285-308.
  14. M. Kojima, Strongly stable stationary solutions in nonlinear program- ming, in S. M. Robinson, ed., Analysis and computation of fixed points, Academic Press, New York, 1988, 93-138.
  15. B. Kummer, Lipschitzian inverse functions directional derivatives and application in C 1,1 optimization, J. Opt. Theory Appl. 70 (1991), 561- 582.
  16. O. L. Mangasarian, T.-H. Shiau, Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems, SIAM J. Control Optim. 25 (1987), 582-595.
  17. B. Mordukhovich, Stability theory for parametric generalized equa- tions and variational inequalities via nonsmooth analysis, Trans. Amer. Math. Soc. 343 (1994), 609-657.
  18. G. S. R. Murthy, T. Parthasarathy, M. Sabatini, On Lips- chitzian Q-matrices, Technical Report 20, Statistical Quality Control and Operations Res. Unit, Indian Statistical Institute, July 1994.
  19. K. G. Murty, Linear complementarity, linear and nonlinear program- ming, Heldermann Verlag, Berlin, 1988.
  20. Jong-Shi Pang, A degree-theoretic approach to parametric nonsmooth equations with multivalued perturbed solution sets, Mathematical Pro- gramming 62 (1993), 359-383.
  21. J.-P. Penot, Metric regularity, openness and Lipschitz multifunctions, Nonlinear Anal. 13 (1989), 629-643.
  22. D. Ralph, A new proof of Robinson's homeomorphism theorem for PL-normal maps, Linear Algebra and Appl. 178 (1993), 249-260.
  23. S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res. 5 (1980), 43-62.
  24. S. M. Robinson, Local structure of feasible sets in nonlinear program- ming, Part II: Nondegeneracy, Mathematical Programming Study 22 (1984), 217-230.
  25. S. M. Robinson, An implicit-function theorem for a class of nonsmooth functions, Math. Oper. Res. 16 (1991), 292-309.
  26. S. M. Robinson, Normal maps induced by linear transformations, Math. of Oper. Res. 17 (1992), 691-714.
  27. R. T. Rockafellar, Lipschitz properties of multifunctions, Nonlinear Analysis 9 (1985), 867-885.
  28. R. T. Rockafellar, Proto-differentiability of set-valued mappings and its applications in optimization, Ann. Inst. H. Poincaré, Analyse Non Linéaire 6 (1989), suppl. 449-482.
  29. H. Samelson, R. M. Thrall, O. Wesler, A partition theorem for Euclidean n-space, Proc. Amer. Math. Soc. 9 (1958), 805-807.
  30. S. Scholtes, Introduction to piecewise differentiable equations, pre- print 53/1994, Institut für Statistik und Mathematische Wirtschafts- theorie, Universität Karlsruhe, May 1994.