Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets (original) (raw)
Abstract
Linear and nonlinear variational inequality problems over a polyhedral convex set are analyzed parametrically. Robinson's notion of strong regularity, as a criterion for the solution set to be a singleton depending Lipschitz continuously on the parameters, is characterized in terms of a new "critical face" condition and in other ways. The consequences for complementarity problems are worked out as a special case. Application is also made to standard nonlinear programming problems with parameters that include the canonical perturbations. In that framework a new characterization of strong regularity is obtained for the variational inequality associated with the Karush-Kuhn-Tucker conditions.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (30)
- J.-P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9 (1984), 87-111.
- J. F. Bonnans, A. Sulem, Pseudopower expansion of solutions of generalized equations and constrained optimization problems, Mathe- matical Programming, 1995.
- J. M. Borwein, D. M. Zhuang, Verifiable necessary and sufficient conditions for openness and regularity of set-valued maps, J. Math. Anal. Appl. 134 (1988), 441-459.
- R. W. Cottle, Jong-Shi Pang, R. E. Stone, The linear comple- mentarity problem, Academic Press, Boston 1992.
- A. L. Dontchev, W. W. Hager, An inverse function theorem for set-valued maps, Proc. Amer. Math. Soc. 121 (1994), 481-489.
- A. L. Dontchev, W. W. Hager, Implicit functions, Lipschitz maps and stability in optimization, Math. of Oper. Res. 19 (1994), 753-768.
- B. C. Eaves, U. G. Rothblum, Relationship of properties of piece- wise affine maps over ordered fields, Linear Algebra and Appl. 132 (1990), 1-63.
- M. S. Gowda, On the continuity of the solution map in linear com- plementarity problems, SIAM J. Optimization 2 (1992), 619-634.
- M. S. Gowda, R. Sznajder, On the Lipschitz properties of poly- hedral multifunctions, preprint, Dept. of Math. and Stat., University of Maryland Baltimore County, November 1994.
- M. Hestenes, Calculus of Variations and Optimal Control Theory, Wiley, 1966.
- H. Th. Jongen, T. Möbert, J. Rückmann, K. Tammer, Implicit functions and sensitivity of stationary points, Linear Algebra and Appl. 95(1987), 97-109.
- H. Th. Jongen, D. Klatte, K. Tammer, Implicit functions and sensitivity of stationary points, Mathematical Programming 19 (1990), 123-138.
- D. Klatte, K. Tammer, Strong stability of stationary solutions and Karush-Kuhn-Tucker points in nonlinear optimization, Annals of Oper. Research 27 (1990), 285-308.
- M. Kojima, Strongly stable stationary solutions in nonlinear program- ming, in S. M. Robinson, ed., Analysis and computation of fixed points, Academic Press, New York, 1988, 93-138.
- B. Kummer, Lipschitzian inverse functions directional derivatives and application in C 1,1 optimization, J. Opt. Theory Appl. 70 (1991), 561- 582.
- O. L. Mangasarian, T.-H. Shiau, Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems, SIAM J. Control Optim. 25 (1987), 582-595.
- B. Mordukhovich, Stability theory for parametric generalized equa- tions and variational inequalities via nonsmooth analysis, Trans. Amer. Math. Soc. 343 (1994), 609-657.
- G. S. R. Murthy, T. Parthasarathy, M. Sabatini, On Lips- chitzian Q-matrices, Technical Report 20, Statistical Quality Control and Operations Res. Unit, Indian Statistical Institute, July 1994.
- K. G. Murty, Linear complementarity, linear and nonlinear program- ming, Heldermann Verlag, Berlin, 1988.
- Jong-Shi Pang, A degree-theoretic approach to parametric nonsmooth equations with multivalued perturbed solution sets, Mathematical Pro- gramming 62 (1993), 359-383.
- J.-P. Penot, Metric regularity, openness and Lipschitz multifunctions, Nonlinear Anal. 13 (1989), 629-643.
- D. Ralph, A new proof of Robinson's homeomorphism theorem for PL-normal maps, Linear Algebra and Appl. 178 (1993), 249-260.
- S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res. 5 (1980), 43-62.
- S. M. Robinson, Local structure of feasible sets in nonlinear program- ming, Part II: Nondegeneracy, Mathematical Programming Study 22 (1984), 217-230.
- S. M. Robinson, An implicit-function theorem for a class of nonsmooth functions, Math. Oper. Res. 16 (1991), 292-309.
- S. M. Robinson, Normal maps induced by linear transformations, Math. of Oper. Res. 17 (1992), 691-714.
- R. T. Rockafellar, Lipschitz properties of multifunctions, Nonlinear Analysis 9 (1985), 867-885.
- R. T. Rockafellar, Proto-differentiability of set-valued mappings and its applications in optimization, Ann. Inst. H. Poincaré, Analyse Non Linéaire 6 (1989), suppl. 449-482.
- H. Samelson, R. M. Thrall, O. Wesler, A partition theorem for Euclidean n-space, Proc. Amer. Math. Soc. 9 (1958), 805-807.
- S. Scholtes, Introduction to piecewise differentiable equations, pre- print 53/1994, Institut für Statistik und Mathematische Wirtschafts- theorie, Universität Karlsruhe, May 1994.