Surface modification of carbon fuels for direct carbon fuel cells (original) (raw)

Abstract

The direct carbon fuel cell (DCFC) is a promising power generation device, which has much higher efficiency (80%) and less emission than conventional coal-fired power plants. Two commercial carbons (one activated carbon and one carbon black) with pre-treatment of HNO 3 , HCl and air plasma are tested in the DCFC. The correlation between the surface properties and electrochemical performances of carbon fuels is explored. The HNO 3-treated carbon fuels have the highest electrochemical reactivity in the DCFC due to the largest degree of surface oxygen functional groups The overall effect on changing the electrochemical reactivity of carbon fuels is of the order HNO 3 > air plasma ≈ HCl. Product gas analysis indicates that complete oxidation of carbon to CO 2 can be achieved at 600-700 °C.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (36)

  1. D. Cao, Y. Sun, G. Wang, Journal of Power Sources, 167 (2) (2007), 250-7.
  2. N. J. Cherepy, R. Krueger, K. J. Fiet, A.F. Jankowski, J.F. Cooper, Journal of the Electrochemical Society, 152(1) (2005), A80-A7.
  3. J. F. Cooper, Proceedings of the Second International Conference on Fuel Cell Science, Engineering and Technology, Rochester, NY, United States, June 14-16, 2004, p375-85.
  4. J.F. Cooper, N. Cherepy, Carbon fuel particles used in direct carbon conversion fuel cells, US patent 845939, 2004.
  5. J.F. Cooper, R. Krueger, N. Cherepy, A high temperature, molten electrolyte electrochemical cell comprising ash-free turbostratic carbon particles, US patent 970283, 2001
  6. K. Hemmes, M. Cassir, Proceedings of the Second International Conference on Fuel Cell Science, Engineering and Technology, Rochester, NY, United States, June 14-16, 2004, p395-400.
  7. S. Zecevic, E.M. Patton, P. Parhami, Chemical Engineering Communications, 192(10-12) (2005) 1655-70.
  8. J. Dubois, J. Millet, S. Palous, Electrochimica Acta, 12(3) (1967)241-4.
  9. Hauser V. A study of carbon anode polarization in fused carbonate fuel cells. PhD thesis, Oregon State University, Corvallis, OR, USA, 1964.
  10. W.H.A. Peelen, M. Olivry, S.F. Au, J.D. Fehribach, K. Hemmes, Journal of Applied Electrochemistry, 30(12) (2000)1389-95.
  11. D.G..Vutetakis Electrochemical oxidation of carbonaceous materials dispersed in molten carbonate, PhD thesis, Ohio State University, Columbus, OH, USA, 1985.
  12. D.G. Vutetakis, D.R. Skidmore, H.J. Byker, Journal of the Electrochemical Society, 134(12) (1987) 3027-35.
  13. R.D. Weaver, S.C. Leach, L. Nanis, Proceedings of the Intersociety Energy Conversion Engineering Conference, 1981, 16 th (Vol. 1), p717-21.
  14. G.A. Hackett, J.W. Zondlo, R. Svensson, Journal of Power Sources, 168(1) (2007) 111-8.
  15. T. Nunoura, K. Dowaki, C. Fushimi, S. Allen, E. Meszaros, M.J. Antal, Industrial & Engineering Chemistry Research, 46(3) (2007) 734-44.
  16. P.V. Pesavento, Carbon-air fuel cell, US patent 6200697, 2001.
  17. S. Zecevic, E.M. Patton, P. Parhami, Carbon, 42(10) (2004) 1983-93.
  18. T.M. Gur, R.A.Huggins, Journal of the Electrochemical Society, 140(7) (1993) 1990-2000.
  19. K. Pointon, B. Lakeman, J. Irvine, J. Bradley, S. Jain, Journal of Power Sources, 162(2) (2006) 750-6.
  20. A.L.Dicks, Journal of Power Sources, 156(2) ( 2006) 128-41.
  21. K. Kinoshita, Carbon: electrochemical and physicochemical properties. New York: Wiley, 1988.
  22. L. Li, Z.H. Zhu, G.Q. Lu, Z.F. Yan, R. De Marco, Applied Catalysis A-General, 309 (2) (2006) 201-9.
  23. S. Kim, S. J. Park, Electrochimica Acta, 52(9) (2007) 3013-21.
  24. Z. Tang, Q. Li, G. Lu, Carbon, 45(1) (2007) 41-6.
  25. S.J. Park, J.S. Kim, Journal of Colloid and Interface Science, 244(2) (2001) 336-41.
  26. J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M.Orfao, Carbon, 37(9) (1999) 1379-89.
  27. B.K. Pradhan, N.K.Sandle, Carbon, 37(8) (1999) 1323-32.
  28. T. Takada, M. Nakahara, H. Kumagai, Y. Sanada, Carbon, 34(9) (1996) 1087-91.
  29. P. Li, T. J. Zhao, J.H. Zhou, Z.J. Sui, Y.C. Dai, W.K. Yuan, Carbon, 43(13) (2005) 2701-10.
  30. Z.H. Zhu, L.R. Radovic, G.Q.Lu. Carbon, 38(3) (2000) 451-64.
  31. J.S. Noh, J.A. Schwarz, Carbon, 28(5) (1990) 675-82.
  32. H. P. Boehm, Carbon, 40(2) (2002), 145-9.
  33. R.D.Weaver, S.C. Leach, A.E. Bayce, L. Nanis, Direct electrochemical generation of electricity from coal, Report for the period 16 May 1977 to 15 February 1979. 1979, SRI, Menlo Park, CA 94025; SAN-0115/105-1.
  34. K. Sasaki, A. Kunai, T. Sada, Denki Kagaku, 48(5) (1980) 311-4.
  35. L.R. Radovic, P.L. Walker Jr, R.G. Jenkins, Fuel, 62(7) (1983) 849-56.
  36. A.A. Lizzio, H. Jiang, L.R. Radovic, Carbon, 28(1) (1990) 7-19.