Distributed Optimization for Nonrigid Nano-Tomography (original) (raw)

Towards monitored tomographic reconstruction: algorithm-dependence and convergence

Computer Optics

The monitored tomographic reconstruction (MTR) with optimized photon flux technique is a pioneering method for X-ray computed tomography (XCT) that reduces the time for data acquisition and the radiation dose. The capturing of the projections in the MTR technique is guided by a scanning protocol built on similar experiments to reach the predetermined quality of the reconstruction. This method allows achieving a similar average reconstruction quality as in ordinary tomography while using lower mean numbers of projections. In this paper, we, for the first time, systematically study the MTR technique under several conditions: reconstruction algorithm (FBP, SIRT, SIRT-TV, and others), type of tomography setup (micro-XCT and nano-XCT), and objects with different morphology. It was shown that a mean dose reduction for reconstruction with a given quality only slightlyvaries with choice of reconstruction algorithm, and reach up to 12.5 % in case of micro-XCT and 8.5 % for nano-XCT. The obta...

A scaled gradient method for digital tomographic image reconstruction

Inverse Problems & Imaging, 2018

Digital tomographic image reconstruction uses multiple x-ray projections obtained along a range of different incident angles to reconstruct a 3D representation of an object. For example, computed tomography (CT) generally refers to the situation when a full set of angles are used (e.g., 360 degrees) while tomosynthesis refers to the case when only a limited (e.g., 30 degrees) angular range is used. In either case, most existing reconstruction algorithms assume that the x-ray source is monoenergetic. This results in a simplified linear forward model, which is easy to solve but can result in artifacts in the reconstructed images. It has been shown that these artifacts can be reduced by using a more accurate polyenergetic assumption for the x-ray source, but the polyenergetic model requires solving a large-scale nonlinear inverse problem. In addition to reducing artifacts, a full polyenergetic model can be used to extract additional information about the materials of the object; that is, to provide a mechanism for quantitative imaging. In this paper, we develop an approach to solve the nonlinear image reconstruction problem by incorporating total variation (TV) regularization. The corresponding optimization problem is then solved by using a scaled gradient descent method. The proposed algorithm is based on KKT conditions and Nesterov's acceleration strategy. Experimental results on reconstructed polyenergetic image data illustrate the effectiveness of this proposed approach.

Data-driven gradient regularization for quasi-Newton optimization in iterative grating interferometry CT reconstruction

IEEE Transactions on Medical Imaging

Grating interferometry CT (GI-CT) is a promising technology that could play an important role in future breast cancer imaging. Thanks to its sensitivity to refraction and small-angle scattering, GI-CT could augment the diagnostic content of conventional absorption-based CT. However, reconstructing GI-CT tomographies is a complex task because of ill problem conditioning and high noise amplitudes. It has previously been shown that combining data-driven regularization with iterative reconstruction is promising for tackling challenging inverse problems in medical imaging. In this work, we present an algorithm that allows seamless combination of data-driven regularization with quasi-Newton solvers, which can better deal with illconditioned problems compared to gradient descent-based optimization algorithms. Contrary to most available algorithms, our method applies regularization in the gradient domain rather than in the image domain. This comes with a crucial advantage when applied in conjunction with quasi-Newton solvers: the Hessian is approximated solely based on denoised data. We apply the proposed method, which we call GradReg, to both conventional breast CT and GI-CT and show that both significantly benefit from our approach in terms of dose efficiency. Moreover, our results suggest that thanks to its sharper gradients that carry more high spatialfrequency content, GI-CT can benefit more from GradReg compared to conventional breast CT. Crucially, GradReg can be applied to any image reconstruction task which relies on gradient-based updates.

4D-CT reconstruction with unified spatial-temporal patch-based regularization

Inverse Problems and Imaging, 2015

In this paper, we consider a limited data reconstruction problem for temporarily evolving computed tomography (CT), where some regions are static during the whole scan and some are dynamic (intensely or slowly changing). When motion occurs during a tomographic experiment one would like to minimize the number of projections used and reconstruct the image iteratively. To ensure stability of the iterative method spatial and temporal constraints are highly desirable. Here, we present a novel spatial-temporal regularization approach where all time frames are reconstructed collectively as a unified function of space and time. Our method has two main differences from the state-of-the-art spatial-temporal regularization methods. Firstly, all available temporal information is used to improve the spatial resolution of each time frame. Secondly, our method does not treat spatial and temporal penalty terms separately but rather unifies them in one regularization term. Additionally we optimize the temporal smoothing part of the method by considering the non-local patches which are most likely to belong to one intensity class. This modification significantly improves the signal-to-noise ratio of the reconstructed images and reduces computational time. The proposed approach is used in combination with golden ratio sampling of the projection data which allows one to find a better trade-off between temporal and spatial resolution scenarios.

Greedy algorithms for diffuse optical tomography reconstruction

Optics Communications, 2018

Diffuse optical tomography (DOT) is a noninvasive imaging modality that reconstructs the optical parameters of a highly scattering medium. However, the inverse problem of DOT is ill-posed and highly nonlinear due to the zigzag propagation of photons that diffuses through the cross section of tissue. The conventional DOT imaging methods iteratively compute the solution of forward diffusion equation solver which makes the problem computationally expensive. Also, these methods fail when the geometry is complex. Recently, the theory of compressive sensing (CS) has received considerable attention because of its efficient use in biomedical imaging applications. The objective of this paper is to solve a given DOT inverse problem by using compressive sensing framework and various Greedy algorithms such as orthogonal matching pursuit (OMP), compressive sampling matching pursuit (CoSaMP), and stagewise orthogonal matching pursuit (StOMP), regularized orthogonal matching pursuit (ROMP) and simultaneous orthogonal matching pursuit (S-OMP) have been studied to reconstruct the change in the absorption parameter i.e, from the boundary data. Also, the Greedy algorithms have been validated experimentally on a paraffin wax rectangular phantom through a well designed experimental set up. We also have studied the conventional DOT methods like least square method and truncated singular value decomposition (TSVD) for comparison. One of the main features of this work is the usage of less number of source-detector pairs, which can facilitate the use of DOT in routine applications of screening. The performance metrics such as mean square error (MSE), normalized mean square error (NMSE), structural similarity index (SSIM), and peak signal to noise ratio (PSNR) have been used to evaluate the performance of the algorithms mentioned in this paper. Extensive simulation results confirm that CS based DOT reconstruction outperforms the conventional DOT imaging methods in terms of computational efficiency. The main advantage of this study is that the forward diffusion equation solver need not be repeatedly solved.

An Entropic Perturbation Approach to TV-Minimization for Limited-Data Tomography

The reconstruction problem of discrete tomography is studied using novel techniques from compressive sensing. Recent theoretical results of the authors enable to predict the number of measurements required for the unique reconstruction of a class of cosparse dense 2D and 3D signals in severely undersampled scenarios by convex programming. These results extend established 1-related theory based on sparsity of the signal itself to novel scenarios not covered so far, including tomographic projections of 3D solid bodies composed of few different materials. As a consequence, the large-scale optimization task based on total-variation minimization subject to tomographic projection constraints is considerably more complex than basic 1-programming for sparse regularization. We propose an entropic perturbation of the objective that enables to apply efficient methodologies from unconstrained optimization to the perturbed dual program. Numerical results validate the theory for large-scale recovery problems of integer-valued functions that exceed the capacity of the commercial MOSEK software.

ENLIVE: An Efficient Nonlinear Method for Calibrationless and Robust Parallel Imaging

Scientific Reports

Robustness against data inconsistencies, imaging artifacts and acquisition speed are crucial factors limiting the possible range of applications for magnetic resonance imaging (MRI). Therefore, we report a novel calibrationless parallel imaging technique which simultaneously estimates coil profiles and image content in a relaxed forward model. Our method is robust against a wide class of data inconsistencies, minimizes imaging artifacts and is comparably fast, combining important advantages of many conceptually different state-of-the-art parallel imaging approaches. Depending on the experimental setting, data can be undersampled well below the Nyquist limit. Here, even high acceleration factors yield excellent imaging results while being robust to noise and the occurrence of phase singularities in the image domain, as we show on different data. Moreover, our method successfully reconstructs acquisitions with insufficient field-of-view. We further compare our approach to ESPIRiT and SAKE using spin-echo and gradient echo MRI data from the human head and knee. In addition, we show its applicability to non-Cartesian imaging on radial FLASH cardiac MRI data. Using theoretical considerations, we show that ENLIVE can be related to a low-rank formulation of blind multi-channel deconvolution, explaining why it inherently promotes low-rank solutions.

Rapid alignment of nanotomography data using joint iterative reconstruction and reprojection

Scientific reports, 2017

As x-ray and electron tomography is pushed further into the nanoscale, the limitations of rotation stages become more apparent, leading to challenges in the alignment of the acquired projection images. Here we present an approach for rapid post-acquisition alignment of these projections to obtain high quality three-dimensional images. Our approach is based on a joint estimation of alignment errors, and the object, using an iterative refinement procedure. With simulated data where we know the alignment error of each projection image, our approach shows a residual alignment error that is a factor of a thousand smaller, and it reaches the same error level in the reconstructed image in less than half the number of iterations. We then show its application to experimental data in x-ray and electron nanotomography.

Alternating direction method of multiplier for tomography with nonlocal regularizers

IEEE transactions on medical imaging, 2014

The ordered subset expectation maximization (OSEM) algorithm approximates the gradient of a likelihood function using a subset of projections instead of using all projections so that fast image reconstruction is possible for emission and transmission tomography such as SPECT, PET, and CT. However, OSEM does not significantly accelerate reconstruction with computationally expensive regularizers such as patch-based nonlocal (NL) regularizers, because the regularizer gradient is evaluated for every subset. We propose to use variable splitting to separate the likelihood term and the regularizer term for penalized emission tomographic image reconstruction problem and to optimize it using the alternating direction method of multiplier (ADMM). We also propose a fast algorithm to optimize the ADMM parameter based on convergence rate analysis. This new scheme enables more sub-iterations related to the likelihood term. We evaluated our ADMM for 3-D SPECT image reconstruction with a patch-base...

Parallel imaging with nonlinear reconstruction using variational penalties

Magnetic Resonance in Medicine, 2012

A new approach based on nonlinear inversion for autocalibrated parallel imaging with arbitrary sampling patterns is presented. By extending the iteratively regularized Gauss-Newton method with variational penalties, the improved reconstruction quality obtained from joint estimation of image and coil sensitivities is combined with the superior noise suppression of total variation and total generalized variation regularization. In addition, the proposed approach can lead to enhanced removal of sampling artifacts arising from pseudorandom and radial sampling patterns. This is demonstrated for phantom and in vivo measurements. Magn Reson Med 67:34-41, 2012.