The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems (original) (raw)

Tundra plants and climate change: the International Tundra Experiment (ITEX)

Global Change Biology, 1997

The International Tundra Experiment (ITEX) was established in late 1990 at a meeting of arctic tundra ecologists as a response to predictions that the human-enhanced greenhouse warming would occur earliest and most intensely at high latitudes. The initial objective of ITEX was to monitor phenology, growth and reproduction in major circumpolar vascular plant species in response to climate variations and environmental manipulations at sites throughout the tundra biome. The manipulations involve passive warming of tundra plots in open-top chambers (OTCs), and manipulating snow depth to alter growing season length. Standard protocols were developed for measurements, experimental design and statistical analyses, and published in an ITEX Manual. The standard methods ensure comparable data are collected at all sites. This special issue of Global Change Biology is based on papers developed from the 6th ITEX Workshop, held at the University of Ottawa, Ottawa, Canada, 7-11 April 1995. The papers compare shortterm responses (1-3 years) of common species to climate variations and manipulations at ITEX sites. The OTCs increase mean near-surface temperatures by 1-3°C during the growing season, simulating predictions from global circulation models. All species investigated responded to the temperature increase, especially in phenology and reproductive variables. However, these short-term responses were individualistic, and no general pattern in type or magnitude of response was noted for functional types or phenology class. Responses were generally similar among sites, although the magnitude of response tended to be greater in high Arctic sites. Early snowmelt increased carbon : nutrient ratios in plants. Sustained growth and reproductive responses to warming will depend on nutrient supply, and increased carbon : nutrient ratios in litter could buffer nutrient cycling, and hence plant growth. Ongoing, long-term research at ITEX sites, linked to other global change initiatives, will help elucidate probable effects of climate change at the ecosystems level in arctic and alpine tundra.

Responses of Tundra Plants to Experimental Warming:Meta-Analysis of the International Tundra Experiment

Ecological Monographs, 1999

The International Tundra Experiment (ITEX) is a collaborative, multisite experiment using a common temperature manipulation to examine variability in species response across climatic and geographic gradients of tundra ecosystems. ITEX was designed specifically to examine variability in arctic and alpine species response to increased temperature. We compiled from one to four years of experimental data from 13 different ITEX sites and used meta-analysis to analyze responses of plant phenology, growth, and reproduction to experimental warming. Results indicate that key phenological events such as leaf bud burst and flowering occurred earlier in warmed plots throughout the study period; however, there was little impact on growth cessation at the end of the season. Quantitative measures of vegetative growth were greatest in warmed plots in the early years of the experiment, whereas reproductive effort and success increased in later years. A shift away from vegetative growth and toward reproductive effort and success in the fourth treatment year suggests a shift from the initial response to a secondary response. The change in vegetative response may be due to depletion of stored plant reserves, whereas the lag in reproductive response may be due to the formation of flower buds one to several seasons prior to flowering. Both vegetative and reproductive responses varied among life-forms; herbaceous forms had stronger and more consistent vegetative growth responses than did woody forms. The greater responsiveness of the herbaceous forms may be attributed to their more flexible morphology and to their relatively greater proportion of stored plant reserves. Finally, warmer, low arctic sites produced the strongest growth responses, but colder sites produced a greater reproductive response. Greater resource investment in vegetative growth may be a conservative strategy in the Low Arctic, where there is more competition for light, nutrients, or water, and there may be little opportunity for successful germination or seedling development. In contrast, in the High Arctic, heavy investment in producing seed under a higher temperature scenario may provide an opportunity for species to colonize patches of unvegetated ground. The observed differential response to warming suggests that the primary forces driving the response vary across climatic zones, functional groups, and through time.

Experimental warming differentially affects vegetative and reproductive phenology of tundra plants

nature communications , 2021

Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.

Changes in high arctic tundra plant reproduction in response to long-term experimental warming

We provide new information on changes in tundra plant sexual reproduction in response to long-term (12 years) experimental warming in the High Arctic. Open-top chambers (OTCs) were used to increase growing season temperatures by 1–2 1C across a range of vascular plant communities. The warming enhanced reproductive effort and success in most species; shrubs and graminoids appeared to be more responsive than forbs. We found that the measured effects of warming on sexual reproduction were more consistently positive and to a greater degree in polar oasis compared with polar semidesert vascular plant communities. Our findings support predictions that long-term warming in the High Arctic will likely enhance sexual reproduction in tundra plants, which could lead to an increase in plant cover. Greater abundance of vegetation has implications for primary consumers – via increased forage availability, and the global carbon budget – as a function of changes in permafrost and vegetation acting as a carbon sink. Enhanced sexual reproduction in Arctic vascular plants may lead to increased genetic variability of offspring, and consequently improved chances of survival in a changing environment. Our findings also indicate that with future warming, polar oases may play an important role as a seed source to the surrounding polar desert landscape.

Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment

Global Change Biology, 2005

We used snow fences and small (1 m 2 ) open-topped fiberglass chambers (OTCs) to study the effects of changes in winter snow cover and summer air temperatures on arctic tundra. In 1994, two 60 m long, 2.8 m high snow fences, one in moist and the other in dry tundra, were erected at Toolik Lake, Alaska. OTCs paired with unwarmed plots, were placed along each experimental snow gradient and in control areas adjacent to the snowdrifts. After 8 years, the vegetation of the two sites, including that in control plots, had changed significantly. At both sites, the cover of shrubs, live vegetation, and litter, together with canopy height, had all increased, while lichen cover and diversity had decreased. At the moist site, bryophytes decreased in cover, while an increase in graminoids was almost entirely because of the response of the sedge Eriophorum vaginatum. These community changes were consistent with results found in studies of responses to warming and increased nutrient availability in the Arctic. However, during the time period of the experiment, summer temperature did not increase, but summer precipitation increased by 28%. The snow addition treatment affected species abundance, canopy height, and diversity, whereas the summer warming treatment had few measurable effects on vegetation. The interannual temperature fluctuation was considerably larger than the temperature increases within OTCs (o2 1C), however. Snow addition also had a greater effect on microclimate by insulating vegetation from winter wind and temperature extremes, modifying winter soil temperatures, and increasing spring run-off. Most increases in shrub cover and canopy height occurred in the medium snow-depth zone (0.5-2 m) of the moist site, and the medium to deep snow-depth zone (2-3 m) of the dry site. At the moist tundra site, deciduous shrubs, particularly Betula nana, increased in cover, while evergreen shrubs decreased. These differential responses were likely because of the larger production to biomass ratio in deciduous shrubs, combined with their more flexible growth response under changing environmental conditions. At the dry site, where deciduous shrubs were a minor part of the vegetation, evergreen shrubs increased in both cover and canopy height. These changes in abundance of functional groups are expected to affect most ecological processes, particularly the rate of litter decomposition, nutrient cycling, and both soil carbon and nitrogen pools. Also, changes in canopy structure, associated with increases in shrub abundance, are expected to alter the summer energy balance by increasing net radiation and evapotranspiration, thus altering soil moisture regimes.

From The Cover: Plant community responses to experimental warming across the tundra biome

Proceedings of the National Academy of Sciences, 2006

to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3°C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere.

Evergreen shrubs dominate responses to experimental summer warming and fertilization in Canadian mesic low arctic tundra

Journal of Ecology, 2014

1. Climate change in arctic tundra is projected to increase soil fertility, which may alter plant community composition and ecosystem processes by shifting niche space to favour particular species' life-history strategies. The rate and magnitude of change in soil fertility may be critical to determining plant community responses, and so effects of slow increases in nutrient availability due to climate warming may differ substantially from those of chronic high-level fertilizer additions.

Climate sensitivity of shrub growth across the tundra biome

Nature Climate Change, 2015

Rapid climate warming in the tundra biome has been linked to increasing shrub dominance 1-4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost 2,5-8 , yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting of multi-decadal time series of annual shrub growth provide an underused resource to explore climate-growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and ⇠42,000 annual growth records from 1,821 individuals. Our analyses demonstrate that the sensitivity of shrub growth to climate was: (1) heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and (2) higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern or upper elevational range edges. Across latitude, climate sensitivity of growth was greatest at the boundary between the Low and High Arctic, where permafrost is thawing 4 and most of the global permafrost soil carbon pool is stored 9. The observed variation in climate-shrub growth relationships should be incorporated into Earth system models to improve future projections of climate change impacts across the tundra biome. The Arctic is warming more rapidly than lower latitudes owing to climate amplification involving temperature, water vapour, albedo and sea ice feedbacks 5,7. Tundra ecosystems are thus predicted to respond more rapidly to climate change than other terrestrial ecosystems 4. The tundra biome spans Arctic and alpine regions that have similar plant species pools and mean climates, yet vary in topography, seasonality, land cover and glaciation history. Concurrent with the recent high-latitude warming trend 7 , repeat photography and vegetation surveys have shown widespread expansion of shrubs 1-3 , characterized by increased canopy cover, height and abundance. However, climate warming 7 and shrub increase 2,10 have not occurred at all sites. Models predict that warming of 2-10 C (ref. 11) could convert as much as half of current tundra to 'shrubland' by the end of the twenty-first century 8 , but the uniformity of the frequently cited relationship between climate

Plant community responses to experimental warming across the Tundra Biome

PNAS, 2006

to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3°C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere.