How changes in vestibular and visual reference frames combine to modify body orientation in space (original) (raw)
Related papers
Frontiers in Systems Neuroscience, 2021
Introduction: The unilateral vestibular syndrome results in postural, oculomotor, perceptive, and cognitive symptoms. This study was designed to investigate the role of vestibular signals in body orientation representation, which remains poorly considered in vestibular patients.Methods: The subjective straight ahead (SSA) was investigated using a method disentangling translation and rotation components of error. Participants were required to align a rod with their body midline in the horizontal plane. Patients with right vestibular neurotomy (RVN; n =8) or left vestibular neurotomy (LVN; n = 13) or vestibular schwannoma resection were compared with 12 healthy controls. Patients were tested the day before surgery and during the recovery period, 7 days and 2 months after the surgery.Results: Before and after unilateral vestibular neurotomy, i.e., in the chronic phases, patients showed a rightward translation bias of their SSA, without rotation bias, whatever the side of the vestibular...
Brain, 2002
The aim of the study was to analyse changes in the orientation and stabilization of the head and trunk and their recovery after complete unilateral loss of vestibular information in humans. The ability of nine Me Ânie Áre's patients to orient and stabilize their heads and trunks in space was investigated during a simple dynamic task of knee-bends and compared with the performance of 10 healthy subjects. Patients' performance was recorded before unilateral vestibular neurotomy (UVN) and during the time-course of recovery (1 week, 1 month, 3 months). Experiments were performed both in eyes open (EO) and eyes closed (EC) conditions to evaluate the role of visual cues in the recovery process. Head and trunk mean angular position (orientation) and mean maximal angular rotation (stabilization) in the roll plane and the yaw plane were recorded using a video motion analysis system. The results indicate that, in the acute stage after UVN (1 week), patients exhibit marked impairments in head and trunk orientation in both visual conditions. In the EC condition, head and trunk were deviated towards the operated side in the roll plane and the yaw plane. Head and trunk stabilization in space was impaired in the roll plane and associated with increased stabilization of the head on the shoulders. Interestingly, vision caused a complete inversion of the orientation pattern, with head and trunk rotations towards the intact side in the roll plane and the yaw plane. Relative to darkness, vision also reduced head and trunk oscillations. Recovery from abnormal head orientation in the light and impaired head stability in both visual conditions was achieved within 1 month and 3 months after UVN, respectively. However, head and trunk orientation in the dark and trunk stabilization in the roll plane remained uncompensated 3 months post-lesion. These results suggest that unilateral vestibular loss leads to a postural syndrome similar to that described previously for various animal species. They con®rm the necessity of vestibular inputs for properly stabilizing head and trunk during self-generated displacements in healthy subjects. They also support the notion that vestibular compensation relies on visual cues whose substitution role gradually decreases after UVN.
How body position changes visual vertical perception after unilateral vestibular loss
Neuropsychologia, 2008
Visual vertical perception, posture and equilibrium are impaired in patients with a unilateral vestibular loss. The present study was designed to investigate whether body position (standing upright, sitting on a chair and lying supine) influences the visual vertical perception in Menière's patients tested before and after a unilateral vestibular neurotomy. Data were compared with sex-and age-matched healthy participants. During the first postoperative month the body position strongly influences the visual vertical perception. The ipsilesional deviation of the visual vertical judgment gradually increased from standing upright to sitting and to lying supine. The present data indicate that visual vertical perception improves when postural control is more demanding. This suggests that postural balance is a key reference for vertical perception, at least up to one month after vestibular loss.
Brain, 1996
The perception of body verticality (subjective postural vertical, SPV) was assessed in normal subjects and in patients with peripheral and central vestibular lesions and the data were compared with conventional neuro-otological assessments. Subjects were seated with eyes closed in a motorized gimbal which executed cycles of tilt at low constant speed (1.5° s~'), both in the frontal (roll) and sagittal (pitch) planes. Subjects indicated with a joystick when they entered and left verticality, thus defining a sector of subjective uprightness in each plane. The mean angle of tilt (identifying a bias of the SPV) and the width of the sector (defining sensitivity of the SPV) were then determined. In normal subjects, the angle of the 'verticality' sector was 5.9° for pitch and roll. Patients with bilateral absence of vestibular function, patients with vertigo, i.e. acute unilateral lesions, benign paroxysmal positional vertigo (BPPV) and Meniere's disease, and patients with positionally modulated up-/ downbeat nystagmus all had enlarged sectors (i.e. loss in sensitivity). Mean sector angle in these groups ranged from 7.8 to 11° and the abnormality was present both in pitch and roll, regardless of the direction of nystagmus or body sway.
Body stance influences the visual vertical perception in patients with vestibular disorders
Computer Methods in Biomechanics and Biomedical Engineering, 2015
a laboratoire 'motricité, interactions, performance' (ea 4334), université du maine, le mans, France; b Cabinet orl docteur philippe lorin, Vertiges & rééducation des troubles Vestibulaires, le mans, France ABSTRACT To describe the visual vertical perception ability during dynamic optokinetic stimulations, 10 visual dependent patients (VD) and 10 patients with unilateral vestibular hypo-areflexia (HPA), completed the Rolf Jacob (RJ) questionnaire and performed the rod and disk test (RDT: Seated and Erected: S-E). RJ: HPA were significantly less sensitive than VD to phobia and the visual criteria (p<0.05). RDT: in erected stance, when the disk and the rod were orientated in the same direction, VD observed less vertical deviation than HPA (p<0.05). All RDT criteria showed only a significant deviation decrease in erected stance for VD (p<0.05). HPA patients did not compensate visual vertical perception deficit when erected. Rehabilitation with physical activity interventions could lead to improved proprioceptive responses and faster compensation.
Dissociating Vestibular and Somatosensory Contributions to Spatial Orientation
Journal of neurophysiology, 2016
Inferring object orientation in the surroundings heavily depends on our internal sense of direction of gravity. Previous research showed that this sense is based on the integration of multiple information sources, including visual, vestibular (otolithic) and somatosensory signals. The individual noise characteristics and contributions of these sensors can be studied using spatial orientation tasks, such as the subjective visual vertical (SVV) task. A recent study reported that patients with complete bilateral vestibular loss perform similar as healthy controls on these tasks, from which it was conjectured that the noise levels of both otoliths and body somatosensors are roll-tilt dependent. Here, we tested this hypothesis in ten healthy human subjects by roll-tilting the head relative to the body to dissociate tilt-angle dependencies of otolith and somatosensory noise. Using a psychometric approach, we measured bias and variability in perceived orientation of a briefly flashed line ...
Neuroscience Letters, 1997
Estimates of the subjective visual and postural vertical were obtained from five patients with acute peripheral vestibular lesions and 20 normal subjects. The visual vertical was assessed by asking the subjects to align a target line to earth vertical by means of remote control. Postural vertical judgments were obtained by exposing them to rotational displacements in the roll plane while sitting on a motor-driven chair and requiring them to align their body to vertical using a joystick control. While the patients showed strong deviations of the visual vertical towards the lesion side, their postural vertical judgments remained veridical. We conclude that the above perceptions are not processed identically and that the participating sensory systems are differently weighted during these tasks.
Frontiers in Human Neuroscience
The visual system is a source of sensory information that perceives environmental stimuli and interacts with other sensory systems to generate visual and postural responses to maintain postural stability. Although the three sensory systems; the visual, vestibular, and somatosensory systems work concurrently to maintain postural control, the visual and vestibular system interaction is vital to differentiate self-motion from external motion to maintain postural stability. The visual system influences postural control playing a key role in perceiving information required for this differentiation. The visual system’s main afferent information consists of optic flow and retinal slip that lead to the generation of visual and postural responses. Visual fixations generated by the visual system interact with the afferent information and the vestibular system to maintain visual and postural stability. This review synthesizes the roles of the visual system and their interaction with the vestib...