Crosslinking of Electrospun Fibres from Unsaturated Polyesters by Bis-Triazolinediones (TAD) (original) (raw)

Abstract

Crosslinking of an unsaturated aliphatic polyester poly(globalide) (PGl) by bistriazolinediones (bisTADs) is reported. First, a monofunctional model compound, phenyl–TAD (PTAD), was tested for PGl functionalisation. 1H-NMR showed that PTAD–ene reaction was highly efficient with conversions up to 97%. Subsequently, hexamethylene bisTAD (HM–bisTAD) and methylene diphenyl bisTAD (MDP–bisTAD) were used to crosslink electrospun PGl fibres via one- and two-step approaches. In the one-step approach, PGl fibres were collected in a bisTAD solution for in situ crosslinking, which resulted in incomplete crosslinking. In the two-step approach, a light crosslinking of fibres was first achieved in a PGl non-solvent. Subsequent incubation in a fibre swelling bisTAD solution resulted in fully amorphous crosslinked fibres. SEM analysis revealed that the fibres’ morphology was uncompromised by the crosslinking. A significant increase of tensile strength from 0.3 ± 0.08 MPa to 2.7 ± 0.8 MPa and 3.9 ± ...

Key takeaways

sparkles

AI

  1. TAD crosslinking of electrospun poly(globalide) increases tensile strength from 0.3 MPa to 3.9 MPa.
  2. Achieved over 1300% tensile strength improvement compared to non-crosslinked PGl fibres.
  3. Two-step crosslinking improved fibre morphology while maintaining diameters around 10-12 μm.
  4. Utilized hexamethylene bisTAD and methylene diphenyl bisTAD for effective crosslinking.
  5. The text demonstrates a novel method for producing robust crosslinked polyester fibres for biomedical applications.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (43)

  1. Zheng, L.; Zhang, X.; Wang, Y.; Liu, F.; Peng, J.; Zhao, X.; Yang, H.; Ma, L.; Wang, B.; Chang, C.; et al. Fabrication of acidic pH-cleavable polymer for anticancer drug delivery using a dual functional monomer. Biomacromolecules 2018, 19, 3874-3882. [CrossRef] [PubMed]
  2. Oh, G.W.; Ko, S.C.; Je, J.Y.; Kim, Y.M.; Oh, J.H.; Jung, W.K. Fabrication, characterization and determination of biological activities of poly(ε-caprolactone)/chitosan-caffeic acid composite fibrous mat for wound dressing application. Int. J. Biol. Macromol. 2016, 93, 1549-1558. [CrossRef] [PubMed]
  3. Pawar, M.D.; Rathna, G.V.N.; Agrawal, S.; Kuchekar, B.S. Bioactive thermoresponsive polyblend nanofiber formulations for wound healing. Mater. Sci. Eng. C 2015, 48, 126-137. [CrossRef] [PubMed]
  4. Labet, M.; Thielemans, W. Synthesis of polycaprolactone: A review. Chem. Soc. Rev. 2009, 38, 3484-3504. [CrossRef] [PubMed]
  5. Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 161, 505-522. [CrossRef]
  6. Malikmammadov, E.; Tanir, T.E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-based materials in biomedical applications. J. Biomat. Sci. Polym. Ed. 2018, 29, 863-893. [CrossRef]
  7. Wilson, J.A.; Ates, Z.; Pflughaupt, R.L.; Dove, A.P.; Heise, A. Polymers from macrolactones: From pheromones to functional materials. Prog. Polym. Sci. 2019, 91, 29-50. [CrossRef]
  8. Ates, Z.; Heise, A. Functional films from unsaturated poly(macrolactones) by thiol-ene cross-linking and functionalization. Polym. Chem. 2014, 5, 2936-2941. [CrossRef]
  9. Ates, Z.; Thornton, D.; Heise, A. Side-chain functionalisation of unsaturated polyesters from ring-opening polymerisation of macrolactones by thiol -ene click chemistry. Polym. Chem. 2011, 2, 309-312. [CrossRef]
  10. Ates, Z.; Audouin, F.; Harrington, A.; O'Connor, B.; Heise, A. Functional brush-decorated poly(globalide) films by ARGET-ATRP for bioconjugation. Macromol. Biosci. 2014, 14, 1600-1608. [CrossRef]
  11. Savin, C.L.; Peptu, C.; Kroneková, Z.; Sedlačík, M.; Mrlik, M.; Sasinková, V.; Peptu, C.A.; Popa, M.; Mosnáček, J. Polyglobalide-based porous networks containing poly(ethylene glycol) structures prepared by photoinitiated thiol-ene coupling. Biomacromolecules 2018, 19, 3331-3342. [CrossRef] [PubMed]
  12. Guindani, C.; Dozoretz, P.; Araújo, P.H.H.; Ferreira, S.R.S.; De Oliveira, D. N-acetylcysteine side-chain functionalization of poly(globalide-co-caprolactone) through thiol-ene reaction. Mater. Sci. Eng. C 2019, 94, 477-483. [CrossRef] [PubMed]
  13. Claudino, M.; Van Der Meulen, I.; Trey, S.; Jonsson, M.; Heise, A.; Johansson, M. Photoinduced thiol-ene crosslinking of globalideε-caprolactone copolymers: Curing performance and resulting thermoset properties. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 16-24. [CrossRef]
  14. Van Der Meulen, I.; Li, Y.; Deumens, R.; Joosten, E.J.; Koning, C.E.; Heise, A. Copolymers from unsaturated macrolactones: Toward the design of cross-linked biodegradable polyesters. Biomacromolecules 2011, 12, 837-843. [CrossRef]
  15. Jian, S.; Zhu, J.; Jiang, S.H.; Chen, S.L.; Fang, H.; Song, Y.; Duan, G.G.; Zhange, Y.F.; Hou, H.Q. Nanofibers with diameter below one nanometer from electrospinning. RSC Adv. 2018, 8, 4794-4802. [CrossRef]
  16. Li, D.; Xia, Y. Electrospinning of Nanofibers: Reinventing the Wheel? Adv. Mater. 2004, 16, 1151-1170.
  17. Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325-347. [CrossRef]
  18. Sill, T.J.; von Recum, H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008, 29, 1989-2006. [CrossRef]
  19. Jun, I.; Han, H.S.; Edwards, J.R.; Jeon, H. Electrospun fibrous scaffolds for tissue engineering: Viewpoints on architecture and fabrication. Int. J. Mol. Sci. 2018, 19, 745. [CrossRef]
  20. Duan, G.; Bagheri, A.R.; Jiang, S.; Golenser, J.; Agarwal, S.; Greiner, A. Exploration of macroporous polymeric sponges as drug carriers. Biomacromolecules 2017, 18, 3215-3221. [CrossRef]
  21. Torres-Martinez, E.J.; Bravo, J.M.C.; Medina, A.S.; González, G.L.P.; Gómez, L.J.V. A summary of electrospun nanofibers as drug delivery system: Drugs loaded and biopolymers used as matrices. Curr. Drug Deliv. 2018, 15, 1360-1374. [CrossRef] [PubMed]
  22. Hu, X.L.; Liu, S.; Zhou, G.Y.; Huang, Y.B.; Xie, Z.G.; Jing, X.B. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 2014, 185, 12-21. [CrossRef] [PubMed]
  23. Jia, H.; Zhu, G.; Vugrinovich, B.; Kataphinan, W.; Reneker, D.H.; Wang, P. Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol. Prog. 2002, 18, 1027-1032. [CrossRef] [PubMed]
  24. Zeng, J.; Aigner, A.; Czubayko, F.; Kissel, T.; Wendorff, J.H.; Greiner, A. Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 2005, 6, 1484-1488. [CrossRef] [PubMed]
  25. Kalaoglu-Altan, O.I.; Sanyal, R.; Sanyal, A. "Clickable" polymeric nanofibers through hydrophilic- hydrophobic balance: Fabrication of robust biomolecular immobilization platforms. Biomacromolecules 2015, 16, 1590-1597. [CrossRef]
  26. Kishan, A.P.; Nezarati, R.M.; Radzicki, C.M.; Renfro, A.L.; Robinson, J.L.; Whitely, M.E.; Cosgriff-Hernandez, E.M. In situ crosslinking of electrospun gelatin for improved fiber morphology retention and tunable degradation. J. Mater. Chem. B 2015, 3, 7930-7938. [CrossRef]
  27. Zhang, X.; Tang, K.; Zheng, X.J. Electrospinning and crosslinking of COL/PVA nanofiber-microsphere containing salicylic acid for drug delivery. Bionic Eng. 2016, 13, 143-149. [CrossRef]
  28. Kalaoglu-Altan, O.I.; Verbraeken, B.; Lava, K.; Gevrek, T.N.; Sanyal, R.; Dargaville, T.; De Clerck, K.; Hoogenboom, R.; Sanyal, A. Multireactive poly(2-oxazoline) nanofibers through electrospinning with crosslinking on the fly. ACS Macro Lett. 2016, 5, 676-681. [CrossRef]
  29. de Oliveira, F.C.S.; Olvera, D.; Sawkins, M.J.; Cryan, S.-A.; Kimmins, S.D.; da Silva, T.E.; Kelly, D.J.; Duffy, G.P.; Kearney, C.; Heise, A. Direct UV-Triggered thiol-ene cross-linking of electrospun polyester fibers from unsaturated poly(macrolactone)s and their drug loading by solvent swelling. Biomacromolecules 2017, 18, 4292-4298. [CrossRef]
  30. Butler, G.B. Triazolinedione Modified Polydienes. Ind. Eng. Chem. Prod. Res. Dev. 1980, 19, 512-528.
  31. De Bruycker, K.; Billiet, S.; Houck, H.A.; Chattopadhyay, S.; Winne, J.M.; Du Prez, F.E. Triazolinediones as highly enabling synthetic tools. Chem. Rev. 2016, 116, 3919-3974. [CrossRef] [PubMed]
  32. Vandewalle, S.; Van De Walle, M.; Chattopadhyay, S.; Du Prez, F. Polycaprolactone-b-poly(N- isopropylacrylamide) nanoparticles: Synthesis and temperature induced coacervation behavior. E. Eur. Polym. J. 2018, 98, 468-474. [CrossRef]
  33. Vlaminck, L.; De Bruycker, K.; Turunc, O.; Du Prez, F.E. ADMET and TAD chemistry: A sustainable alliance. Polym. Chem. 2016, 7, 5655-5663. [CrossRef]
  34. Hanay, S.B.; O'Dwyer, J.; Kimmins, S.D.; De Oliveira, F.C.S.; Haugh, M.G.; O'Brien, F.J.; Cryan, S.-A.; Heise, A. Facile approach to covalent copolypeptide hydrogels and hybrid organohydrogels. ACS Macro Lett. 2018, 7, 944-949. [CrossRef]
  35. Hanay, S.B.; Ritzen, B.; Brougham, D.; Dias, A.A.; Heise, A. Exploring tyrosine-triazolinedione (TAD) reactions for the selective conjugation and cross-linking of N-Carboxyanhydride (NCA) derived synthetic copolypeptides. Macromol. Biosci. 2017, 17, 1-7. [CrossRef]
  36. Brannigan, R.P.; Kimmins, S.D.; Bobbi, E.; Caulfield, S.; Heise, A. Synthesis of novel bis-triazolinedione crosslinked amphiphilic polypept(o)ide nanostructures. Macromol. Chem. Phys. 2019, 1900067, 1-5.
  37. Türünç, O.; Billiet, S.; De Bruycker, K.; Ouardad, S.; Winne, J.; Du Prez, F.E. From plant oils to plant foils: Straightforward functionalization and crosslinking of natural plant oils with triazolinediones. Eur. Polym. J. 2015, 65, 286-297. [CrossRef]
  38. Chattopadhyay, S.; Du Prez, F.E. Simple design of chemically crosslinked plant oil nanoparticles by triazolinedione-ene chemistry. Eur. Polym. J. 2016, 81, 77-85. [CrossRef]
  39. Van Der Heijden, S.; De Bruycker, K.; Simal, R.; Du Prez, F.; De Clerck, K. Use of triazolinedione click chemistry for tuning the mechanical properties of electrospun SBS-fibers. Macromolecules 2015, 48, 6474-6481.
  40. Van Der Heijden, S.; Daelemans, L.; De Bruycker, K.; Simal, R.; De Baere, I.; Van Paepegem, W.; Rahier, H.; De Clerck, K. Novel composite materials with tunable delamination resistance using functionalizable electrospun SBS fibers. Compos. Struct. 2017, 159, 12-20. [CrossRef]
  41. Polloni, A.E.; Chiaradia, V.; Figura, E.M.; de Paoli, J.P.; de Oliveira, D.; de Oliveira, J.V.; de Araujo, P.H.H.; Sayer, C. Polyesters from Macrolactones Using Commercial Lipase NS 88011 and Novozym 435 as Biocatalysts. Appl. Biochem. Biotechnol. 2018, 184, 659-672. [CrossRef] [PubMed]
  42. Kumar, A.; Kalra, B.; Dekhterman, A.; Gross, R.A. Efficient ring-opening polymerization and copolymerization of ε-Caprolactone and ω-Pentadecalactone catalyzed by Candida antartica lipase B. Macromolecules 2000, 33, 6303. [CrossRef]
  43. de Geus, M.; Van Der Meulen, I.; Goderis, B.; van Hecke, K.; Dorschu, M.; van der Werff, H.; Koning, C.E.; Heise, A. Performance polymers from renewable monomers: High molecular weight poly(pentadecalactone) for fiber applications. Polym. Chem. 2010, 1, 525-533. [CrossRef]

FAQs

sparkles

AI

What advantages do TAD crosslinkers offer compared to traditional methods?add

TAD crosslinkers can react within seconds to minutes at ambient temperatures, enhancing efficiency and compatibility. This rapid reaction facilitates the modification and crosslinking of unsaturated poly(macrolactone)s without the need for catalysts.

How do the mechanical properties of crosslinked fibres compare to untreated ones?add

After the two-step crosslinking, the tensile strength of fibres increased from 0.3 MPa to 3.9 MPa, demonstrating a 1300% enhancement. This improvement surpasses that observed with conventional thiol-ene crosslinking methods.

What polymer properties change with TAD modification?add

Post-modification with PTAD, the polymer exhibited reduced crystallinity and transformed into a transparent, glass-like material. The conversion rate of double bonds exceeded 90%, indicating substantial structural alteration.

What electrospinning parameters were optimized for PGl fibres?add

Electrospinning was performed at a voltage of 12 kV, with a flow rate of 100 μL/min. The PGl concentration was maintained at 30 wt % in dichloromethane (DCM) for optimal fibre uniformity.

What implications does this research have for drug delivery systems?add

The resulting crosslinked fibres can allow for selective drug loading, which enhances their utility in controlled drug delivery applications. This advancement may facilitate improved therapeutic efficacy in biomedical applications.