Recognition of Diagnostic Gaps for Laboratory Diagnosis of Fungal Diseases: Expert Opinion from the Fungal Diagnostics Laboratories Consortium (FDLC) (original) (raw)

Abstract

Fungal infections are a rising threat to our immunocompromised patient population, as well as other nonimmunocompromised patients with various medical conditions. However, little progress has been made in the past decade to improve fungal diagnostics.

Figures (3)

FIG 1 Fungal diagnostic priorities associated with disease-specific and method/approach-specific diagnostic gaps. The figure illustrates identification of the five fungal diagnostic priorities associated six disease- and six method- specific diagnostic gaps that are further delineated in the commentary. FFPE, formalin fixed and _ paraffin embedded; MALDI-TOF MS, matrix-assisted laser desorption ionization-time of flight mass spectrometry.

FIG 1 Fungal diagnostic priorities associated with disease-specific and method/approach-specific diagnostic gaps. The figure illustrates identification of the five fungal diagnostic priorities associated six disease- and six method- specific diagnostic gaps that are further delineated in the commentary. FFPE, formalin fixed and _ paraffin embedded; MALDI-TOF MS, matrix-assisted laser desorption ionization-time of flight mass spectrometry.

TABLE 1 FDA-cleared methods for the rapid identification of Candida species in blood?  2FDA, Food and Drug Administration; PNA, peptide nucleic acid; FISH, fluorescent in situ hybridization; BCID, blood culture identification; SN, sensitivity; SP, specificity.  The Yeast TrafficLight and T2Candida panel detected but could not differentiate C. albicans from C. parapsilosis or C. glabrata from C. krusei.  The FilmArray BCID2 includes C. auris.  dMinimal steps include sample pipetting only. Moderate steps may include pipetting, mixing, centrifugation, and/or slide preparation.  *Accuracy in blood culture aliquot studies represents the overall agreement compared to a reference standard. For MALDI-TOF MS studies, species identification scores below the study’s stated threshold were cons incorrect.  fSepsityper protocols vary across studies, and some reports have used laboratory-developed extraction methods. Sepsityper is CE marked but is not FDA cleared.

TABLE 1 FDA-cleared methods for the rapid identification of Candida species in blood? 2FDA, Food and Drug Administration; PNA, peptide nucleic acid; FISH, fluorescent in situ hybridization; BCID, blood culture identification; SN, sensitivity; SP, specificity. The Yeast TrafficLight and T2Candida panel detected but could not differentiate C. albicans from C. parapsilosis or C. glabrata from C. krusei. The FilmArray BCID2 includes C. auris. dMinimal steps include sample pipetting only. Moderate steps may include pipetting, mixing, centrifugation, and/or slide preparation. *Accuracy in blood culture aliquot studies represents the overall agreement compared to a reference standard. For MALDI-TOF MS studies, species identification scores below the study’s stated threshold were cons incorrect. fSepsityper protocols vary across studies, and some reports have used laboratory-developed extraction methods. Sepsityper is CE marked but is not FDA cleared.

TABLE 2 Summary of fungal disease-specific and method/approach-specific diagnostic gaps and proposals to fill the gaps?  “AST, antifungal susceptibility testing; BDG, 1,3-8-p-glucan; CF, cystic fibrosis; FFPE, formalin fixed and paraffin embedded; GM, galactomannan; ID, identification; NAAT, nucleic acid amplification test; qNAAT, quantitative NAAT; POCT, point-of-care test; +, available; —, not available.

TABLE 2 Summary of fungal disease-specific and method/approach-specific diagnostic gaps and proposals to fill the gaps? “AST, antifungal susceptibility testing; BDG, 1,3-8-p-glucan; CF, cystic fibrosis; FFPE, formalin fixed and paraffin embedded; GM, galactomannan; ID, identification; NAAT, nucleic acid amplification test; qNAAT, quantitative NAAT; POCT, point-of-care test; +, available; —, not available.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (196)

  1. Williams KM, Ahn KW, Chen M, Aljurf MD, Agwu AL, Chen AR, Walsh TJ, Szabolcs P, Boeckh MJ, Auletta JJ, Lindemans CA, Zanis-Neto J, Malvezzi M, Lister J, de Toledo Codina JS, Sackey K, Chakrabarty JL, Ljungman P, Wingard JR, Seftel MD, Seo S, Hale GA, Wirk B, Smith MS, Savani BN, Lazarus HM, Marks DI, Ustun C, Abdel-Azim H, Dvorak CC, Szer J, Storek J, Yong A, Riches MR. 2016. The incidence, mortality and timing of Pneumo- cystis jirovecii pneumonia after hematopoietic cell transplantation: a CIBMTR analysis. Bone Marrow Transplant 51:573-580. https://doi.org/10 .1038/bmt.2015.316.
  2. Sepkowitz KA. 2002. Opportunistic infections in patients with and patients without acquired immunodeficiency syndrome. Clin Infect Dis 34:1098-1107. https://doi.org/10.1086/339548.
  3. Donnelly JP, Chen SC, Kauffman CA, Steinbach WJ, Baddley JW, Verweij PE, Clancy CJ, Wingard JR, Lockhart SR, Groll AH, Sorrell TC, Bassetti M, Akan H, Alexander BD, Andes D, Azoulay E, Bialek R, Bradsher RW, Bretagne S, Calandra T, Caliendo AM, Castagnola E, et al. 2020. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis 71:1367-1376. https://doi.org/10 .1093/cid/ciz1008.
  4. Fishman JA, Gans H, AST Infectious Diseases Community of Practice. 2019. Pneumocystis jirovecii in solid organ transplantation: guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 33:e13587. https://doi.org/10.1111/ctr.13587.
  5. Limper AH, Offord KP, Smith TF, Martin WJ, II. 1989. Pneumocystis carinii pneumonia. Differences in lung parasite number and inflammation in patients with and without AIDS. Am Rev Respir Dis 140:1204-1209. https://doi.org/10.1164/ajrccm/140.5.1204.
  6. Fan LC, Lu HW, Cheng KB, Li HP, Xu JF. 2013. Evaluation of PCR in bron- choalveolar lavage fluid for diagnosis of Pneumocystis jirovecii pneumo- nia: a bivariate meta-analysis and systematic review. PLoS One 8:e73099. https://doi.org/10.1371/journal.pone.0073099.
  7. Lu Y, Ling G, Qiang C, Ming Q, Wu C, Wang K, Ying Z. 2011. PCR diagnosis of Pneumocystis pneumonia: a bivariate meta-analysis. J Clin Microbiol 49:4361-4363. https://doi.org/10.1128/JCM.06066-11.
  8. Tia T, Putaporntip C, Kosuwin R, Kongpolprom N, Kawkitinarong K, Jongwutiwes S. 2012. A highly sensitive novel PCR assay for detection of Pneumocystis jirovecii DNA in bronchoalveolar lavage specimens from immunocompromised patients. Clin Microbiol Infect 18:598-603. https://doi.org/10.1111/j.1469-0691.2011.03656.x.
  9. Gits-Muselli M, White PL, Mengoli C, Chen S, Crowley B, Dingemans G, Fréalle E, R LG, Guiver M, Hagen F, Halliday C, Johnson G, Lagrou K, Lengerova M, Melchers WJG, Novak-Frazer L, Rautemaa-Richardson R, Scherer E, Steinmann J, Cruciani M, Barnes R, Donnelly JP, Loeffler J, Bretagne S, Alanio A. 2020. The Fungal PCR Initiative's evaluation of in- house and commercial Pneumocystis jirovecii qPCR assays: toward a standard for a diagnostics assay. Med Mycol 58:779-788. https://doi.org/ 10.1093/mmy/myz115.
  10. Liu B, Totten M, Nematollahi S, Datta K, Memon W, Marimuthu S, Wolf LA, Carroll KC, Zhang SX. 2020. Development and evaluation of a fully automated molecular assay targeting the mitochondrial small subunit rRNA gene for the detection of Pneumocystis jirovecii in bronchoalveolar lavage fluid specimens. J Mol Diagn 22:1482-1493. https://doi.org/10 .1016/j.jmoldx.2020.10.003.
  11. Maskell NA, Waine DJ, Lindley A, Pepperell JC, Wakefield AE, Miller RF, Davies RJ. 2003. Asymptomatic carriage of Pneumocystis jirovecii in sub- jects undergoing bronchoscopy: a prospective study. Thorax 58:594-597. https://doi.org/10.1136/thorax.58.7.594.
  12. Nevez G, Raccurt C, Vincent P, Jounieaux V, Dei-Cas E. 1999. Pulmonary colonization with Pneumocystis carinii in human immunodeficiency vi- rus-negative patients: assessing risk with blood CD4 1 T cell counts. Clin Infect Dis 29:1331-1332. https://doi.org/10.1086/313478.
  13. Khodadadi H, Mirhendi H, Mohebali M, Kordbacheh P, Zarrinfar H, Makimura K. 2013. Pneumocystis jirovecii colonization in non-HIV- infected patients based on nested-PCR detection in bronchoalveolar la- vage samples. Iran J Public Health 42:298-305.
  14. Fritzsche C, Riebold D, Fuehrer A, Mitzner A, Klammt S, Mueller-Hilke B, Reisinger EC. 2013. Pneumocystis jirovecii colonization among renal transplant recipients. Nephrology (Carlton) 18:382-387. https://doi.org/ 10.1111/nep.12054.
  15. Rhoads D, Peaper DR, She RC, Nolte FS, Wojewoda CM, Anderson NW, Pritt BS. 2020. College of American Pathologists (CAP) Microbiology Committee Perspective: caution must be used in interpreting the cycle threshold (Ct) value. Clin Infect Dis https://doi.org/10.1093/cid/ciaa1199.
  16. Fauchier T, Hasseine L, Gari-Toussaint M, Casanova V, Marty PM, Pomares C. 2016. Detection of Pneumocystis jirovecii by quantitative PCR to differentiate colonization and pneumonia in immunocompromised HIV-positive and HIV-negative patients. J Clin Microbiol 54:1487-1495. https://doi.org/10.1128/JCM.03174-15.
  17. Perret T, Kritikos A, Hauser PM, Guiver M, Coste AT, Jaton K, Lamoth F. 2020. Ability of quantitative PCR to discriminate Pneumocystis jirovecii pneumonia from colonization. J Med Microbiol 69:705-711. https://doi .org/10.1099/jmm.0.001190.
  18. Pinana JL, Albert E, Gomez MD, Perez A, Hernandez-Boluda JC, Montoro J, Salavert M, Gonzalez EM, Tormo M, Gimenez E, Villalba M, Balaguer- Rosello A, Hernani R, Bueno F, Borras R, Sanz J, Solano C, Navarro D. 2020. Clinical significance of Pneumocystis jirovecii DNA detection by real-time PCR in hematological patient respiratory specimens. J Infect 80:578-606. https://doi.org/10.1016/j.jinf.2020.01.001.
  19. Theel ES, Jespersen DJ, Iqbal S, Bestrom JE, Rollins LO, Misner LJ, Markley BJ, Mandrekar J, Baddour LM, Limper AH, Wengenack NL, Binnicker MJ. 2013. Detection of (1,3)-b-D-glucan in bronchoalveolar lavage and serum samples collected from immunocompromised hosts. Mycopathologia 175:33-41. https://doi.org/10.1007/s11046-012-9579-y.
  20. Theel ES, Doern CD. 2013. b-D-Glucan testing is important for diagnosis of invasive fungal infections. J Clin Microbiol 51:3478-3483. https://doi .org/10.1128/JCM.01737-13.
  21. Karageorgopoulos DE, Qu JM, Korbila IP, Zhu YG, Vasileiou VA, Falagas ME. 2013. Accuracy of b-D-glucan for the diagnosis of Pneumocystis jiro- vecii pneumonia: a meta-analysis. Clin Microbiol Infect 19:39-49. https:// doi.org/10.1111/j.1469-0691.2011.03760.x.
  22. Onishi A, Sugiyama D, Kogata Y, Saegusa J, Sugimoto T, Kawano S, Morinobu A, Nishimura K, Kumagai S. 2012. Diagnostic accuracy of se- rum 1,3-b-D-glucan for Pneumocystis jirovecii pneumonia, invasive candi- diasis, and invasive aspergillosis: systematic review and meta-analysis. J Clin Microbiol 50:7-15. https://doi.org/10.1128/JCM.05267-11.
  23. Tasaka S. 2015. Pneumocystis pneumonia in human immunodeficiency virus-infected adults and adolescents: current concepts and future direc- tions. Clin Med Insights Circ Respir Pulm Med 9:19-28. https://doi.org/10 .4137/CCRPM.S23324.
  24. Damiani C, Le Gal S, Da Costa C, Virmaux M, Nevez G, Totet A. 2013. Com- bined quantification of pulmonary Pneumocystis jirovecii DNA and serum (1!3)-b-D-glucan for differential diagnosis of Pneumocystis pneumonia and Pneumocystis colonization. J Clin Microbiol 51:3380-3388. https:// doi.org/10.1128/JCM.01554-13.
  25. Morjaria S, Frame J, Franco-Garcia A, Geyer A, Kamboj M, Babady NE. 2019. Clinical Performance of 1,3-b-D-glucan for the diagnosis of pneu- mocystis pneumonia (PCP) in cancer patients tested with PCP polymer- ase chain reaction. Clin Infect Dis 69:1303-1309. https://doi.org/10.1093/ cid/ciy1072.
  26. CLSI. 2012. Principles and practice for detection of fungi in clinical speci- mens: direct examination and culture. Approved guideline M54-A. Clini- cal and Laboratory Standards Institute, Wayne, PA.
  27. Berkow E, McGowan K. 2019. Mycology: specimen collection, transporta- tion, and processing, p 1016-2024. In Carroll K, Pfaller M, Landry M (ed), Manual of clinical microbiology, 12th ed. ASM Press, Washington, DC.
  28. Leber A. 2016. Clinical microbiology procedure handbook, 4th ed, vol 2. ASM Press, Washington, DC.
  29. Legrand M, Gits-Muselli M, Boutin L, Garcia-Hermoso D, Maurel V, Soussi S, Benyamina M, Ferry A, Chaussard M, Hamane S, Denis B, Touratier S, Guigue N, Fréalle E, Jeanne M, Shaal JV, Soler C, Mimoun M, Chaouat M, Lafaurie M, Mebazaa A, Bretagne S, Alanio A. 2016. Detection of circulat- ing Mucorales DNA in critically ill burn patients: preliminary report of a screening strategy for early diagnosis and treatment. Clin Infect Dis 63:1312-1317. https://doi.org/10.1093/cid/ciw563.
  30. Millon L, Herbrecht R, Grenouillet F, Morio F, Alanio A, Letscher-Bru V, Cassaing S, Chouaki T, Kauffmann-Lacroix C, Poirier P, Toubas D, Augereau O, Rocchi S, Garcia-Hermoso D, Bretagne S. 2016. Early diagno- sis and monitoring of mucormycosis by detection of circulating DNA in serum: retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF). Clin Micro- biol Infect 22:810 e811-810 e818.
  31. Millon L, Larosa F, Lepiller Q, Legrand F, Rocchi S, Daguindau E, Scherer E, Bellanger AP, Leroy J, Grenouillet F. 2013. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients. Clin Infect Dis 56: e95-101. https://doi.org/10.1093/cid/cit094.
  32. Mercier T, Reynders M, Beuselinck K, Guldentops E, Maertens J, Lagrou K. 2019. Serial detection of circulating Mucorales DNA in invasive mucor- mycosis: a retrospective multicenter evaluation. J Fungi (Basel) 5:113. https://doi.org/10.3390/jof5040113.
  33. Springer J, Lackner M, Ensinger C, Risslegger B, Morton CO, Nachbaur D, Lass-Flörl C, Einsele H, Heinz WJ, Loeffler J. 2016. Clinical evaluation of a Mucorales-specific real-time PCR assay in tissue and serum samples. J Med Microbiol 65:1414-1421. https://doi.org/10.1099/jmm.0.000375.
  34. Guegan H, Iriart X, Bougnoux ME, Berry A, Robert-Gangneux F, Gangneux JP. 2020. Evaluation of MucorGenius Mucorales PCR assay for the diagnosis of pulmonary mucormycosis. J Infect 81:311-317. https:// doi.org/10.1016/j.jinf.2020.05.051.
  35. Baldin C, Soliman SSM, Jeon HH, Alkhazraji S, Gebremariam T, Gu Y, Bruno VM, Cornely OA, Leather HL, Sugrue MW, Wingard JR, Stevens DA, Edwards JE, Jr, Ibrahim AS. 2018. PCR-based approach targeting Mucor- ales-specific gene family for diagnosis of mucormycosis. J Clin Microbiol 56:e00746-18. https://doi.org/10.1128/JCM.00746-18.
  36. Cornely OA, Alastruey-Izquierdo A, Arenz D, Chen SCA, Dannaoui E, Hochhegger B, Hoenigl M, Jensen HE, Lagrou K, Lewis RE, Mellinghoff SC, Mer M, Pana ZD, Seidel D, Sheppard DC, Wahba R, Akova M, Alanio A, Al- Hatmi AMS, Arikan-Akdagli S, Badali H, Ben-Ami R, et al. 2019. Global guide- line for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis 19:e405-e421. https://doi.org/10.1016/S1473-3099(19)30312-3.
  37. Rocchi S, Scherer E, Mengoli C, Alanio A, Botterel F, Bougnoux ME, Bretagne S, Cogliati M, Cornu M, Dalle F, Damiani C, Denis J, Fuchs S, Gits-Muselli M, Hagen F, Halliday C, Hare R, Iriart X, Klaassen C, Lackner M, Lengerova M, Letscher-Bru V, Morio F, Nourrisson C, Posch W, Sendid B, Springer J, Willinger B, White PL, Barnes RA, Cruciani M, Donnelly JP, Loeffler J, Millon L. 2020. Interlaboratory evaluation of Mucorales PCR assays for testing serum specimens: a study by the fungal PCR Initiative and the Modimucor Study Group. Med Mycol 59:126-138. https://doi .org/10.1093/mmy/myaa036.
  38. Patterson TF, Thompson GR, III, Denning DW, Fishman JA, Hadley S, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Nguyen MH, Segal BH, Steinbach WJ, Stevens DA, Walsh TJ, Wingard JR, Young JA, Bennett JE. 2016. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 63:e1-e60. https://doi.org/10.1093/cid/ciw326.
  39. Marr KA, Laverdiere M, Gugel A, Leisenring W. 2005. Antifungal therapy decreases sensitivity of the Aspergillus galactomannan enzyme immu- noassay. Clin Infect Dis 40:1762-1769. https://doi.org/10.1086/429921.
  40. Rath PM, Steinmann J. 2018. Overview of commercially available PCR assays for the detection of Aspergillus spp. DNA in patient samples. Front Microbiol 9:740. https://doi.org/10.3389/fmicb.2018.00740.
  41. Cruciani M, Mengoli C, Barnes R, Donnelly JP, Loeffler J, Jones BL, Klingspor L, Maertens J, Morton CO, White LP. 2019. Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immu- nocompromised people. Cochrane Database Syst Rev 9:CD009551. https://doi.org/10.1002/14651858.CD009551.pub4.
  42. White PL, Posso RB, Barnes RA. 2017. Analytical and clinical evaluation of the PathoNostics AsperGenius assay for detection of invasive aspergillosis and resistance to azole antifungal drugs directly from plasma samples. J Clin Microbiol 55:2356-2366. https://doi.org/10.1128/JCM.00411-17.
  43. White PL, Perry MD, Moody A, Follett SA, Morgan G, Barnes RA. 2011. Evaluation of analytical and preliminary clinical performance of Myco- nostica MycAssay Aspergillus when testing serum specimens for diagno- sis of invasive aspergillosis. J Clin Microbiol 49:2169-2174. https://doi .org/10.1128/JCM.00101-11.
  44. Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, et al. 2018. Di- agnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 24(Suppl 1): e1-e38. https://doi.org/10.1016/j.cmi.2018.01.002.
  45. White PL, Wingard JR, Bretagne S, Löffler J, Patterson TF, Slavin MA, Barnes RA, Pappas PG, Donnelly JP. 2015. Aspergillus polymerase chain reaction: systematic review of evidence for clinical use in comparison with antigen testing. Clin Infect Dis 61:1293-1303. https://doi.org/10 .1093/cid/civ507.
  46. Barnes RA, White PL, Morton CO, Rogers TR, Cruciani M, Loeffler J, Donnelly JP. 2018. Diagnosis of aspergillosis by PCR: clinical considera- tions and technical tips. Med Mycol 56:60-72. https://doi.org/10.1093/ mmy/myx091.
  47. Luong ML, Clancy CJ, Vadnerkar A, Kwak EJ, Silveira FP, Wissel MC, Grantham KJ, Shields RK, Crespo M, Pilewski J, Toyoda Y, Kleiboeker SB, Pakstis D, Reddy SK, Walsh TJ, Nguyen MH. 2011. Comparison of an As- pergillus real-time polymerase chain reaction assay with galactomannan testing of bronchoalveolar lavage fluid for the diagnosis of invasive pul- monary aspergillosis in lung transplant recipients. Clin Infect Dis 52:1218-1226. https://doi.org/10.1093/cid/cir185.
  48. White PL, Barnes RA, Springer J, Klingspor L, Cuenca-Estrella M, Morton CO, Lagrou K, Bretagne S, Melchers WJ, Mengoli C, Donnelly JP, Heinz WJ, Loeffler J, EAPCRI. 2015. Clinical performance of Aspergillus PCR for testing serum and plasma: a study by the European Aspergillus PCR Initiative. J Clin Microbiol 53:2832-2837. https://doi.org/10.1128/JCM.00905-15.
  49. White PL, Mengoli C, Bretagne S, Cuenca-Estrella M, Finnstrom N, Klingspor L, Melchers WJ, McCulloch E, Barnes RA, Donnelly JP, Loeffler J, European Aspergillus PCR Initiative (EAPCRI). 2011. Evaluation of Aspergillus PCR protocols for testing serum specimens. J Clin Microbiol 49:3842-3848. https://doi.org/10.1128/JCM.05316-11.
  50. Springer J, White PL, Hamilton S, Michel D, Barnes RA, Einsele H, Löffler J. 2016. Comparison of performance characteristics of Aspergillus PCR in testing a range of blood-based samples in accordance with international methodological recommendations. J Clin Microbiol 54:705-711. https:// doi.org/10.1128/JCM.02814-15.
  51. Loeffler J, Mengoli C, Springer J, Bretagne S, Cuenca-Estrella M, Klingspor L, Lagrou K, Melchers WJ, Morton CO, Barnes RA, Donnelly JP, White PL, European Aspergillus PCR Initiative. 2015. Analytical comparison of in vitro- spiked human serum and plasma for PCR-based detection of Aspergillus fumigatus DNA: a study by the European Aspergillus PCR Initiative. J Clin Microbiol 53:2838-2845. https://doi.org/10.1128/JCM.00906-15.
  52. Morton CO, White PL, Barnes RA, Klingspor L, Cuenca-Estrella M, Lagrou K, Bretagne S, Melchers W, Mengoli C, Caliendo AM, Cogliati M, Debets- Ossenkopp Y, Gorton R, Hagen F, Halliday C, Hamal P, Harvey-Wood K, Jaton K, Johnson G, Kidd S, Lengerova M, Lass-Florl C, Linton C, Millon L, Morrissey CO, Paholcsek M, Talento AF, Ruhnke M, Willinger B, Donnelly JP, Loeffler J. 2017. Determining the analytical specificity of PCR-based assays for the diagnosis of IA: what is Aspergillus? Med Mycol 55:402-413. https://doi.org/10.1093/mmy/myw093.
  53. Arvanitis M, Ziakas PD, Zacharioudakis IM, Zervou FN, Caliendo AM, Mylonakis E. 2014. PCR in diagnosis of invasive aspergillosis: a meta-anal- ysis of diagnostic performance. J Clin Microbiol 52:3731-3742. https:// doi.org/10.1128/JCM.01365-14.
  54. Aguado JM, Vázquez L, Fernández-Ruiz M, Villaescusa T, Ruiz-Camps I, Barba P, Silva JT, Batlle M, Solano C, Gallardo D, Heras I, Polo M, Varela R, Vallejo C, Olave T, López-Jiménez J, Rovira M, Parody R, Cuenca-Estrella M, Spanish Network for Research in Infectious Diseases. 2015. Serum gal- actomannan versus a combination of galactomannan and polymerase chain reaction-based Aspergillus DNA detection for early therapy of invasive aspergillosis in high-risk hematological patients: a randomized controlled trial. Clin Infect Dis 60:405-414. https://doi.org/10.1093/cid/ ciu833.
  55. Morrissey CO, Chen SC, Sorrell TC, Milliken S, Bardy PG, Bradstock KF, Szer J, Halliday CL, Gilroy NM, Moore J, Schwarer AP, Guy S, Bajel A, Tramontana AR, Spelman T, Slavin MA, Australasian Leukaemia Lym- phoma Group and the Australia and New Zealand Mycology Interest Group. 2013. Galactomannan and PCR versus culture and histology for directing use of antifungal treatment for invasive aspergillosis in high- risk haematology patients: a randomised controlled trial. Lancet Infect Dis 13:519-528. https://doi.org/10.1016/S1473-3099(13)70076-8.
  56. Springer J, Morton CO, Perry M, Heinz WJ, Paholcsek M, Alzheimer M, Rogers TR, Barnes RA, Einsele H, Loeffler J, White PL. 2013. Multicenter comparison of serum and whole-blood specimens for detection of As- pergillus DNA in high-risk hematological patients. J Clin Microbiol 51:1445-1450. https://doi.org/10.1128/JCM.03322-12.
  57. Buil JB, Zoll J, Verweij PE, Melchers WJG. 2018. Molecular detection of az- ole-resistant Aspergillus fumigatus in clinical samples. Front Microbiol 9:515. https://doi.org/10.3389/fmicb.2018.00515.
  58. Walker TA, Lockhart SR, Beekmann SE, Polgreen PM, Santibanez S, Mody RK, Beer KD, Chiller TM, Jackson BR. 2018. Recognition of azole-resistant aspergillosis by physicians specializing in infectious diseases, United States. Emerg Infect Dis 24:111-113. https://doi.org/10.3201/eid2401 .170971.
  59. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309-317. https://doi.org/10.1086/421946.
  60. Cesaro S, Tridello G, Blijlevens N, Ljungman P, Craddock C, Michallet M, Martin A, Snowden JA, Mohty M, Maertens J, Passweg J, Petersen E, Nihtinen A, Isaksson C, Milpied N, Rohlich PS, Deconinck E, Crawley C, Ledoux MP, Hoek J, Nagler A, Styczynski J. 2018. Incidence, risk factors, and long-term outcome of acute leukemia patients with early candide- mia after allogeneic stem cell transplantation: a study by the Acute Leu- kemia and Infectious Diseases Working Parties of European Society for Blood and Marrow Transplantation. Clin Infect Dis 67:564-572. https:// doi.org/10.1093/cid/ciy150.
  61. Cornely OA, Gachot B, Akan H, Bassetti M, Uzun O, Kibbler C, Marchetti O, de Burghgraeve P, Ramadan S, Pylkkanen L, Ameye L, Paesmans M, Donnelly JP, Donnelly PJ, EORTC Infectious Diseases Group. 2015. Epide- miology and outcome of fungemia in a cancer Cohort of the Infectious Diseases Group (IDG) of the European Organization for Research and Treatment of Cancer (EORTC 65031). Clin Infect Dis 61:324-331. https:// doi.org/10.1093/cid/civ293.
  62. Zhang AY, Shrum S, Williams S, Petnic S, Nadle J, Johnston H, Barter D, VonBank B, Bonner L, Hollick R, Marceaux K, Harrison L, Schaffner W, Tesini BL, Farley MM, Pierce RA, Phipps E, Mody RK, Chiller TM, Jackson BR, Vallabhaneni S. 2019. The changing epidemiology of candidemia in the United States: injection drug use as an increasingly common risk fac- tor: active surveillance in selected sites, United States, 2014-2017. Clin Infect Dis 71:1732-1737. https://doi.org/10.1093/cid/ciz1061.
  63. Tsay SV, Mu Y, Williams S, Epson E, Nadle J, Bamberg WM, Barter DM, Johnston HL, Farley MM, Harb S, Thomas S, Bonner LA, Harrison LH, Hollick R, Marceaux K, Mody RK, Pattee B, Shrum Davis S, Phipps EC, Tesini BL, Gellert AB, Zhang AY, Schaffner W, Hillis S, Ndi D, Graber CR, Jackson BR, Chiller T, Magill S, Vallabhaneni S. 2020. Burden of candide- mia in the United States, 2017. Clin Infect Dis 71:e449-e453. https://doi .org/10.1093/cid/ciaa193.
  64. Garey KW, Rege M, Pai MP, Mingo DE, Suda KJ, Turpin RS, Bearden DT. 2006. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis 43:25-31. https://doi.org/10.1086/504810.
  65. Pancholi P, Carroll KC, Buchan BW, Chan RC, Dhiman N, Ford B, Granato PA, Harrington AT, Hernandez DR, Humphries RM, Jindra MR, Ledeboer NA, Miller SA, Mochon AB, Morgan MA, Patel R, Schreckenberger PC, Stamper PD, Simner PJ, Tucci NE, Zimmerman C, Wolk DM. 2018. Multi- center evaluation of the accelerate PhenoTest BC kit for rapid identifica- tion and phenotypic antimicrobial susceptibility testing using morphoki- netic cellular analysis. J Clin Microbiol 56:e01329-17. https://doi.org/10 .1128/JCM.01329-17.
  66. Salimnia H, Fairfax MR, Lephart PR, Schreckenberger P, DesJarlais SM, Johnson JK, Robinson G, Carroll KC, Greer A, Morgan M, Chan R, Loeffelholz M, Valencia-Shelton F, Jenkins S, Schuetz AN, Daly JA, Barney T, Hemmert A, Kanack KJ. 2016. Evaluation of the FilmArray blood culture identification panel: results of a multicenter controlled trial. J Clin Micro- biol 54:687-698. https://doi.org/10.1128/JCM.01679-15.
  67. Simor AE, Porter V, Mubareka S, Chouinard M, Katz K, Vermeiren C, Fattouh R, Matukas LM, Tadros M, Mazzulli T, Poutanen S. 2018. Rapid identification of Candida species from positive blood cultures by use of the FilmArray blood culture identification panel. J Clin Microbiol 56: e01387-18. https://doi.org/10.1128/JCM.01387-18.
  68. Zhang SX, Carroll KC, Lewis S, Totten M, Mead P, Samuel L, Steed LL, Nolte FS, Thornberg A, Reid JL, Whitfield NN, Babady NE. 2020. Multicen- ter evaluation of a PCR-based digital microfluidics and electrochemical detection system for the rapid identification of 15 fungal pathogens directly from positive blood cultures. J Clin Microbiol 58:e02096-19. https://doi.org/10.1128/JCM.02096-19.
  69. Jeddi F, Yapo-Kouadio GC, Normand AC, Cassagne C, Marty P, Piarroux R. 2017. Performance assessment of two lysis methods for direct identifica- tion of yeasts from clinical blood cultures using MALDI-TOF mass spec- trometry. Med Myco 55:185-192. https://doi.org/10.1093/mmy/myw038.
  70. Yan Y, He Y, Maier T, Quinn C, Shi G, Li H, Stratton CW, Kostrzewa M, Tang YW. 2011. Improved identification of yeast species directly from positive blood culture media by combining Sepsityper specimen proc- essing and Microflex analysis with the matrix-assisted laser desorption ionization Biotyper system. J Clin Microbiol 49:2528-2532. https://doi .org/10.1128/JCM.00339-11.
  71. Clancy CJ, Nguyen MH. 2013. Finding the "missing 50%" of invasive can- didiasis: how nonculture diagnostics will improve understanding of dis- ease spectrum and transform patient care. Clin Infect Dis 56:1284-1292. https://doi.org/10.1093/cid/cit006.
  72. Clancy CJ, Pappas PG, Vazquez J, Judson MA, Kontoyiannis DP, Thompson GR, Garey KW, Reboli A, Greenberg RN, Apewokin S, Lyon GM, Ostrosky-Zeichner L, Wu AHB, Tobin E, Nguyen MH, Caliendo AM. 2018. Detecting infections rapidly and easily for Candidemia Trial, Part 2 (DIRECT2): a prospective, multicenter study of the T2Candida Panel. Clin Infect Dis 66:1678-1686. https://doi.org/10.1093/cid/cix1095.
  73. Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, Garey KW, Alangaden GJ, Vazquez JA, Groeger JS, Judson MA, Vinagre YM, Heard SO, Zervou FN, Zacharioudakis IM, Kontoyiannis DP, Pappas PG. 2015. T2 magnetic reso- nance assay for the rapid diagnosis of candidemia in whole blood: a clin- ical trial. Clin Infect Dis 60:892-899. https://doi.org/10.1093/cid/ciu959.
  74. Clancy CJ, Nguyen MH. 2018. T2 magnetic resonance for the diagnosis of bloodstream infections: charting a path forward. J Antimicrob Chemo- ther 73:iv2-iv5. https://doi.org/10.1093/jac/dky050.
  75. Valero C, Buitrago MJ, Gago S, Quiles-Melero I, García-Rodríguez J. 2018. A matrix-assisted laser desorption/ionization time of flight mass spec- trometry reference database for the identification of Histoplasma capsu- latum. Med Mycol 56:307-314. https://doi.org/10.1093/mmy/myx047.
  76. Porte L, Valdivieso F, Wilmes D, Gaete P, Díaz MC, Thompson L, Munita JM, Alliende R, Varela C, Rickerts V, Weitzel T. 2019. Laboratory exposure to Coccidioides: lessons learnt in a non-endemic country. J Hosp Infect 102:461-464. https://doi.org/10.1016/j.jhin.2019.03.006.
  77. Babady NE, Buckwalter SP, Hall L, Le Febre KM, Binnicker MJ, Wengenack NL. 2011. Detection of Blastomyces dermatitidis and Histoplasma capsula- tum from culture isolates and clinical specimens by use of real-time PCR. J Clin Microbiol 49:3204-3208. https://doi.org/10.1128/JCM.00673-11.
  78. Bialek R, Ernst F, Dietz K, Najvar LK, Knobloch J, Graybill JR, Schaumburg- Lever G. 2002. Comparison of staining methods and a nested PCR assay to detect Histoplasma capsulatum in tissue sections. Am J Clin Pathol 117:597-603. https://doi.org/10.1309/MH5B-GAQ2-KY19-FT7P.
  79. Bialek R, Feucht A, Aepinus C, Just-Nubling G, Robertson VJ, Knobloch J, Hohle R. 2002. Evaluation of two nested PCR assays for detection of Histo- plasma capsulatum DNA in human tissue. J Clin Microbiol 40:1644-1647. https://doi.org/10.1128/jcm.40.5.1644-1647.2002.
  80. Bialek R, Kern J, Herrmann T, Tijerina R, Cecenas L, Reischl U, Gonzalez GM. 2004. PCR assays for identification of Coccidioides posadasii based on the nucleotide sequence of the antigen 2/proline-rich antigen. J Clin Microbiol 42:778-783. https://doi.org/10.1128/jcm.42.2.778-783.2004.
  81. Binnicker MJ, Buckwalter SP, Eisberner JJ, Stewart RA, McCullough AE, Wohlfiel SL, Wengenack NL. 2007. Detection of Coccidioides species in clinical specimens by real-time PCR. J Clin Microbiol 45:173-178. https:// doi.org/10.1128/JCM.01776-06.
  82. Burgess JW, Schwan WR, Volk TJ. 2006. PCR-based detection of DNA from the human pathogen Blastomyces dermatitidis from natural soil samples. Med Mycol 44:741-748. https://doi.org/10.1080/13693780600954749.
  83. Elias NA, Cuestas ML, Sandoval M, Poblete G, Lopez-Daneri G, Jewtuchowicz V, Iovannitti C, Mujica MT. 2012. Rapid identification of Histoplasma capsulatum directly from cultures by multiplex PCR. Myco- pathologia 174:451-456. https://doi.org/10.1007/s11046-012-9567-2.
  84. Guedes H. L d M, Guimarães AJ, Muniz M. d M, Pizzini CV, Hamilton AJ, Peralta JM, Deepe GS, Zancopé-Oliveira RM. 2003. PCR assay for identifi- cation of Histoplasma capsulatum based on the nucleotide sequence of the M antigen. J Clin Microbiol 41:535-539. https://doi.org/10.1128/jcm .41.2.535-539.2003.
  85. Martagon-Villamil J, Shrestha N, Sholtis M, Isada CM, Hall GS, Bryne T, Lodge BA, Reller LB, Procop GW. 2003. Identification of Histoplasma cap- sulatum from culture extracts by real-time PCR. J Clin Microbiol 41:1295-1298. https://doi.org/10.1128/jcm.41.3.1295-1298.2003.
  86. Mitchell M, Dizon D, Libke R, Peterson M, Slater D, Dhillon A. 2015. Devel- opment of a real-time PCR assay for identification of Coccidioides immitis by use of the BD Max system. J Clin Microbiol 53:926-929. https://doi .org/10.1128/JCM.02731-14.
  87. Muraosa Y, Toyotome T, Yahiro M, Watanabe A, Shikanai-Yasuda MA, Kamei K. 2016. Detection of Histoplasma capsulatum from clinical speci- mens by cycling probe-based real-time PCR and nested real-time PCR. Med Mycol 54:433-438. https://doi.org/10.1093/mmy/myv106.
  88. Pounder JI, Hansen D, Woods GL. 2006. Identification of Histoplasma cap- sulatum, Blastomyces dermatitidis, and Coccidioides species by repetitive- sequence-based PCR. J Clin Microbiol 44:2977-2982. https://doi.org/10 .1128/JCM.00687-06.
  89. Sidamonidze K, Peck MK, Perez M, Baumgardner D, Smith G, Chaturvedi V, Chaturvedi S. 2012. Real-time PCR assay for identification of Blastomy- ces dermatitidis in culture and in tissue. J Clin Microbiol 50:1783-1786. https://doi.org/10.1128/JCM.00310-12.
  90. Wiwanitkit V. 2010. TaqMan real-time PCR assay for Coccidioides. Med Mycol 48:679; author reply 680. https://doi.org/10.3109/13693780903496625.
  91. Hall L, Doerr KA, Wohlfiel SL, Roberts GD. 2003. Evaluation of the Micro- Seq system for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J Clin Microbiol 41:1447-1453. https://doi.org/10.1128/JCM .41.4.1447-1453.2003.
  92. Hall L, Wohlfiel S, Roberts GD. 2003. Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of com- monly encountered, clinically important yeast species. J Clin Microbiol 41:5099-5102. https://doi.org/10.1128/jcm.41.11.5099-5102.2003.
  93. Hall L, Wohlfiel S, Roberts GD. 2004. Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of filamentous fungi encountered in the clinical laboratory. J Clin Microbiol 42:622-626. https://doi.org/10.1128/jcm.42.2.622-626.2004.
  94. Sandhu GS, Kline BC, Stockman L, Roberts GD. 1995. Molecular probes for diagnosis of fungal infections. J Clin Microbiol 33:2913-2919. https:// doi.org/10.1128/JCM.33.11.2913-2919.1995.
  95. Stempak LM, Vogel SA, Richter SS, Wyllie R, Procop GW. 2019. Routine broad-range fungal polymerase chain reaction with DNA sequencing in patients with suspected mycoses does not add value and is not cost- effective. Arch Pathol Lab Med 143:634-638. https://doi.org/10.5858/ arpa.2017-0299-OA.
  96. Wheat LJ. 2006. Improvements in diagnosis of histoplasmosis. Expert Opin Biol Ther 6:1207-1221. https://doi.org/10.1517/14712598.6.11.1207.
  97. Wheat LJ. 2006. Histoplasmosis: a review for clinicians from non- endemic areas. Mycoses 49:274-282. https://doi.org/10.1111/j.1439 -0507.2006.01253.x.
  98. Wheat LJ, Kohler RB, Tewari RP. 1986. Diagnosis of disseminated histo- plasmosis by detection of Histoplasma capsulatum antigen in serum and urine specimens. N Engl J Med 314:83-88. https://doi.org/10.1056/ NEJM198601093140205.
  99. Falci DR, Monteiro AA, Braz Caurio CF, Magalhães TCO, Xavier MO, Basso RP, Melo M, Schwarzbold AV, Ferreira PRA, Vidal JE, Marochi JP, Godoy CSM, Soares RBA, Paste A, Bay MB, Pereira-Chiccola VL, Damasceno LS, Leitão T, Pasqualotto AC. 2019. Histoplasmosis, an underdiagnosed dis- ease affecting people living with HIV/AIDS in Brazil: results of a multicen- ter prospective cohort study using both classical mycology tests and his- toplasma urine antigen detection. Open Forum Infect Dis 6:ofz073. https://doi.org/10.1093/ofid/ofz073.
  100. Theel ES, Harring JA, Dababneh AS, Rollins LO, Bestrom JE, Jespersen DJ. 2015. Reevaluation of commercial reagents for detection of Histoplasma capsulatum antigen in urine. J Clin Microbiol 53:1198-1203. https://doi .org/10.1128/JCM.03175-14.
  101. Davies SF. 1986. Serodiagnosis of histoplasmosis. Semin Respir Infect 1:9-15.
  102. Fandino-Devia E, Rodriguez-Echeverri C, Cardona-Arias J, Gonzalez A. 2016. Antigen detection in the diagnosis of histoplasmosis: a meta-anal- ysis of diagnostic performance. Mycopathologia 181:197-205. https:// doi.org/10.1007/s11046-015-9965-3.
  103. Swartzentruber S, Rhodes L, Kurkjian K, Zahn M, Brandt ME, Connolly P, Wheat LJ. 2009. Diagnosis of acute pulmonary histoplasmosis by anti- gen detection. Clin Infect Dis 49:1878-1882. https://doi.org/10.1086/ 648421.
  104. Williams B, Fojtasek M, Connolly-Stringfield P, Wheat J. 1994. Diagnosis of histoplasmosis by antigen detection during an outbreak in Indianapo- lis, Ind. Arch Pathol Lab Med 118:1205-1208.
  105. Libert D, Procop GW, Ansari MQ. 2018. Histoplasma urinary antigen test- ing obviates the need for coincident serum antigen testing. Am J Clin Pathol 149:362-368. https://doi.org/10.1093/ajcp/aqx169.
  106. Baumgardner DJ. 2018. Use of urine antigen testing for Blastomyces in an integrated health system. J Patient Cent Res Rev 5:176-182. https:// doi.org/10.17294/2330-0698.1452.
  107. Frost HM, Novicki TJ. 2015. Blastomyces antigen detection for diagnosis and management of blastomycosis. J Clin Microbiol 53:3660-3662. https://doi.org/10.1128/JCM.02352-15.
  108. Walkty A, Keynan Y, Karlowsky J, Dhaliwal P, Embil J. 2018. Central nerv- ous system blastomycosis diagnosed using the MVista® Blastomyces quantitative antigen enzyme immunoassay test on cerebrospinal fluid: a case report and review of the literature. Diagn Microbiol Infect Dis 90:102-104. https://doi.org/10.1016/j.diagmicrobio.2017.10.015.
  109. Bamberger DM, Pepito BS, Proia LA, Ostrosky-Zeichner L, Ashraf M, Marty F, Scully E, Wheat LJ. 2015. Cerebrospinal fluid Coccidioides anti- gen testing in the diagnosis and management of central nervous system coccidioidomycosis. Mycoses 58:598-602. https://doi.org/10.1111/myc .12366.
  110. Durkin M, Connolly P, Kuberski T, Myers R, Kubak BM, Bruckner D, Pegues D, Wheat LJ. 2008. Diagnosis of coccidioidomycosis with use of the Coccidioides antigen enzyme immunoassay. Clin Infect Dis 47:e69- 73. https://doi.org/10.1086/592073.
  111. Kassis C, Zaidi S, Kuberski T, Moran A, Gonzalez O, Hussain S, Hartmann- Manrique C, Al-Jashaami L, Chebbo A, Myers RA, Wheat LJ. 2015. Role of Coccidioides antigen testing in the cerebrospinal fluid for the diagnosis of coccidioidal meningitis. Clin Infect Dis 61:1521-1526. https://doi.org/ 10.1093/cid/civ585.
  112. Assi M, Lakkis IE, Wheat LJ. 2011. Cross-reactivity in the Histoplasma anti- gen enzyme immunoassay caused by sporotrichosis. Clin Vaccine Immu- nol 18:1781-1782. https://doi.org/10.1128/CVI.05017-11.
  113. Tobar Vega P, Erramilli S, Lee E. 2019. Talaromyces marneffei laboratory cross reactivity with Histoplasma and Blastomyces urinary antigen. Int J Infect Dis 86:15-17. https://doi.org/10.1016/j.ijid.2019.06.018.
  114. Wheat J, Wheat H, Connolly P, Kleiman M, Supparatpinyo K, Nelson K, Bradsher R, Restrepo A. 1997. Cross-reactivity in Histoplasma capsulatum variety capsulatum antigen assays of urine samples from patients with endemic mycoses. Clin Infect Dis 24:1169-1171. https://doi.org/10 .1086/513647.
  115. Kozel TR, Wickes B. 2014. Fungal diagnostics. Cold Spring Harb Perspect Med 4:a019299. https://doi.org/10.1101/cshperspect.a019299.
  116. Kauffman CA. 2007. Histoplasmosis: a clinical and laboratory update. Clin Microbiol Rev 20:115-132. https://doi.org/10.1128/CMR.00027-06.
  117. Kuberski T, Herrig J, Pappagianis D. 2010. False-positive IgM serology in coccidioidomycosis. J Clin Microbiol 48:2047-2049. https://doi.org/10 .1128/JCM.01843-09.
  118. Guarner J, Brandt ME. 2011. Histopathologic diagnosis of fungal infec- tions in the 21st century. Clin Microbiol Rev 24:247-280. https://doi.org/ 10.1128/CMR.00053-10.
  119. Procop GW, Wilson M. 2001. Infectious disease pathology. Clin Infect Dis 32:1589-1601. https://doi.org/10.1086/320537.
  120. Sears D, Schwartz BS. 2017. Candida auris: an emerging multidrug-resist- ant pathogen. Int J Infect Dis 63:95-98. https://doi.org/10.1016/j.ijid .2017.08.017.
  121. Spivak ES, Hanson KE. 2018. Candida auris: an emerging fungal pathogen. J Clin Microbiol 56:e01588-17. https://doi.org/10.1128/JCM.01588-17.
  122. Kordalewska M, Perlin DS. 2019. Molecular diagnostics in the times of surveillance for Candida auris. J Fungi (Basel) 5:77. https://doi.org/10 .3390/jof5030077.
  123. Kathuria S, Singh PK, Sharma C, Prakash A, Masih A, Kumar A, Meis JF, Chowdhary A. 2015. Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdi- lution, and Etest method. J Clin Microbiol 53:1823-1830. https://doi.org/ 10.1128/JCM.00367-15.
  124. Mizusawa M, Miller H, Green R, Lee R, Durante M, Perkins R, Hewitt C, Simner PJ, Carroll KC, Hayden RT, Zhang SX. 2017. Can multidrug-resist- ant Candida auris be reliably identified in clinical microbiology laborato- ries? J Clin Microbiol 55:638-640. https://doi.org/10.1128/JCM.02202-16.
  125. Kordalewska M, Perlin DS. 2019. Identification of drug-resistant Candida auris. Front Microbiol 10:1918. https://doi.org/10.3389/fmicb.2019.01918.
  126. Ding CH, Situ SF, Steven A, Razak MFA. 2019. The pitfall of utilizing a commercial biochemical yeast identification kit to detect Candida auris. Ann Clin Lab Sci 49:546-549.
  127. Sexton DJ, Kordalewska M, Bentz ML, Welsh RM, Perlin DS, Litvintseva AP. 2018. Direct detection of emergent fungal pathogen Candida auris in clinical skin swabs by SYBR Green-based quantitative PCR assay. J Clin Microbiol 56:e01337-18. https://doi.org/10.1128/JCM.01337-18.
  128. Leach L, Zhu Y, Chaturvedi S. 2017. Development and validation of a real- time PCR assay for rapid detection of Candida auris from surveillance sam- ples. J Clin Microbiol 56:e01223-17. https://doi.org/10.1128/JCM.01223-17.
  129. Ruiz-Gaitan AC, Fernandez-Pereira J, Valentin E, Tormo-Mas MA, Eraso E, Peman J, de Groot PWJ. 2018. Molecular identification of Candida auris by PCR amplification of species-specific GPI protein-encoding genes. Int J Med Microbiol 308:812-818. https://doi.org/10.1016/j.ijmm.2018.06.014.
  130. Kordalewska M, Zhao Y, Lockhart SR, Chowdhary A, Berrio I, Perlin DS. 2017. Rapid and accurate molecular identification of the emerging mul- tidrug-resistant pathogen Candida auris. J Clin Microbiol 55:2445-2452. https://doi.org/10.1128/JCM.00630-17.
  131. Leach L, Russell A, Zhu Y, Chaturvedi S, Chaturvedi V. 2019. A rapid and automated sample-to-result Candida auris real-time PCR assay for high- throughput testing of surveillance samples with the BD Max open system. J Clin Microbiol 57:e00630-19. https://doi.org/10.1128/JCM.00630-19.
  132. Lima A, Widen R, Vestal G, Uy D, Silbert S. 2019. A TaqMan probe-based real-time PCR assay for the rapid identification of the emerging multi- drug-resistant pathogen Candida auris on the BD Max system. J Clin Microbiol 57:e01604-18. https://doi.org/10.1128/JCM.01604-18.
  133. Arendrup MC, Boekhout T, Akova M, Meis JF, Cornely OA, Lortholary O, European Confederation of Medical Mycology. 2014. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin Microbiol Infect 20(Suppl 3):76-98. https:// doi.org/10.1111/1469-0691.12360.
  134. Chagas-Neto TC, Chaves GM, Melo AS, Colombo AL. 2009. Bloodstream infections due to Trichosporon spp.: species distribution, Trichosporon asahii genotypes determined on the basis of ribosomal DNA intergenic spacer 1 sequencing, and antifungal susceptibility testing. J Clin Micro- biol 47:1074-1081. https://doi.org/10.1128/JCM.01614-08.
  135. De Almeida GM, Costa SF, Melhem M, Motta AL, Szeszs MW, Miyashita F, Pierrotti LC, Rossi F, Burattini MN. 2008. Rhodotorula spp. isolated from blood cultures: clinical and microbiological aspects. Med Mycol 46:547-556. https://doi.org/10.1080/13693780801972490.
  136. Rhimi W, Theelen B, Boekhout T, Otranto D, Cafarchia C. 2020. Malassezia spp. yeasts of emerging concern in fungemia. Front Cell Infect Microbiol 10:370. https://doi.org/10.3389/fcimb.2020.00370.
  137. Buchta V, Bolehovská R, Hovorková E, Cornely OA, Seidel D, Žák P. 2019. Saprochaete clavata invasive infections: a new threat to hematological- oncological patients. Front Microbiol 10:2196. https://doi.org/10.3389/ fmicb.2019.02196.
  138. Bidart M, Bonnet I, Hennebique A, Kherraf ZE, Pelloux H, Berger F, Cornet M, Bailly S, Maubon D. 2015. An in-house assay is superior to Sep- sityper for direct matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry identification of yeast species in blood cultures. J Clin Microbiol 53:1761-1764. https://doi.org/10.1128/ JCM.03600-14.
  139. Tortorano AM, Richardson M, Roilides E, van Diepeningen A, Caira M, Munoz P, Johnson E, Meletiadis J, Pana ZD, Lackner M, Verweij P, Freiberger T, Cornely OA, Arikan-Akdagli S, Dannaoui E, Groll AH, Lagrou K, Chakrabarti A, Lanternier F, Pagano L, Skiada A, Akova M, Arendrup MC, Boekhout T, Chowdhary A, Cuenca-Estrella M, Guinea J, Guarro J, de Hoog S, Hope W, Kathuria S, Lortholary O, Meis JF, Ullmann AJ, Petrikkos G, Lass-Flörl C. 2014. ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others. Clin Microbiol Infect 20(Suppl 3):27-46. https://doi.org/ 10.1111/1469-0691.12465.
  140. Nucci F, Nouér SA, Capone D, Nucci M. 2018. Invasive mould disease in haematologic patients: comparison between fusariosis and aspergillosis. Clin Microbiol Infect 24:1105.e1-1105.e4. https://doi.org/10.1016/j.cmi .2018.05.006.
  141. Nucci M, Carlesse F, Cappellano P, Varon AG, Seber A, Garnica M, Nouér SA, Colombo AL. 2014. Earlier diagnosis of invasive fusariosis with Asper- gillus serum galactomannan testing. PLoS One 9:e87784. https://doi .org/10.1371/journal.pone.0087784.
  142. Sanguinetti M, Posteraro B. 2017. Identification of molds by matrix- assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 55:369-379. https://doi.org/10.1128/JCM.01640-16.
  143. Triest D, Stubbe D, De Cremer K, Piérard D, Normand AC, Piarroux R, Detandt M, Hendrickx M. 2015. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of molds of the Fusarium genus. J Clin Microbiol 53:465-476. https://doi.org/10 .1128/JCM.02213-14.
  144. CLSI. 2018. Interpretive criteria for identification of bacteria and fungi by targeted DNA sequencing. MM18, 2nd ed. Clinical and Laboratory Standards Institute, Wayne, PA.
  145. Cortez KJ, Roilides E, Quiroz-Telles F, Meletiadis J, Antachopoulos C, Knudsen T, Buchanan W, Milanovich J, Sutton DA, Fothergill A, Rinaldi MG, Shea YR, Zaoutis T, Kottilil S, Walsh TJ. 2008. Infections caused by Scedosporium spp. Clin Microbiol Rev 21:157-197. https://doi.org/10 .1128/CMR.00039-07.
  146. Sangoi AR, Rogers WM, Longacre TA, Montoya JG, Baron EJ, Banaei N. 2009. Challenges and pitfalls of morphologic identification of fungal infections in histologic and cytologic specimens: a ten-year retrospec- tive review at a single institution. Am J Clin Pathol 131:364-375. https:// doi.org/10.1309/AJCP99OOOZSNISCZ.
  147. Gomez CA, Budvytiene I, Zemek AJ, Banaei N. 2017. Performance of tar- geted fungal sequencing for culture-independent diagnosis of invasive fungal disease. Clin Infect Dis 65:2035-2041. https://doi.org/10.1093/ cid/cix728.
  148. Wiederhold NP. 2017. Antifungal resistance: current trends and future strategies to combat. Infect Drug Resist 10:249-259. https://doi.org/10 .2147/IDR.S124918.
  149. Guevara-Suarez M, Sutton DA, Cano-Lira JF, García D, Martin-Vicente A, Wiederhold N, Guarro J, Gené J. 2016. Identification and antifungal sus- ceptibility of penicillium-like fungi from clinical samples in the United States. J Clin Microbiol 54:2155-2161. https://doi.org/10.1128/JCM .00960-16.
  150. Jacobs SE, Wengenack NL, Walsh TJ. 2020. Non-aspergillus hyaline molds: emerging causes of sino-pulmonary fungal infections and other invasive mycoses. Semin Respir Crit Care Med 41:115-130. https://doi .org/10.1055/s-0039-3401989.
  151. Revankar SG, Sutton DA. 2010. Melanized fungi in human disease. Clin Microbiol Rev 23:884-928. https://doi.org/10.1128/CMR.00019-10.
  152. Weitzman I, Summerbell RC. 1995. The dermatophytes. Clin Microbiol Rev 8:240-259. https://doi.org/10.1128/CMR.8.2.240-259.1995.
  153. Saccente M, Woods GL. 2010. Clinical and laboratory update on blasto- mycosis. Clin Microbiol Rev 23:367-381. https://doi.org/10.1128/CMR .00056-09.
  154. Chen SC, Meyer W, Sorrell TC. 2014. Cryptococcus gattii infections. Clin Microbiol Rev 27:980-1024. https://doi.org/10.1128/CMR.00126-13.
  155. Berkow EL, Nunnally NS, Bandea A, Kuykendall R, Beer K, Lockhart SR. 2018. Detection of TR(34)/L98H CYP51A mutation through passive sur- veillance for azole-resistant Aspergillus fumigatus in the United States from 2015 to 2017. Antimicrob Agents Chemother 62:e02240-17. https://doi.org/10.1128/AAC.02240-17.
  156. Novak-Frazer L, Anees-Hill SP, Hassan D, Masania R, Moore CB, Richardson MD, Denning DW, Rautemaa-Richardson R. 2020. Deciphering Aspergillus fumigatus CYP51A-mediated triazole resistance by pyrosequencing of re- spiratory specimens. J Antimicrob Chemother 75:3501-3509. https://doi .org/10.1093/jac/dkaa357.
  157. Muñoz-Cadavid C, Rudd S, Zaki SR, Patel M, Moser SA, Brandt ME, Gómez BL. 2010. Improving molecular detection of fungal DNA in formalin-fixed paraffin-embedded tissues: comparison of five tissue DNA extraction methods using panfungal PCR. J Clin Microbiol 48:2147-2153. https://doi .org/10.1128/JCM.00459-10.
  158. Raja HA, Miller AN, Pearce CJ, Oberlies NH. 2017. Fungal identification using molecular tools: a primer for the natural products research com- munity. J Nat Prod 80:756-770. https://doi.org/10.1021/acs.jnatprod .6b01085.
  159. Larkin PMK, Lawson KL, Contreras DA, Le CQ, Trejo M, Realegeno S, Hilt EE, Chandrasekaran S, Garner OB, Fishbein GA, Yang S. 2020. Amplicon- based next-generation sequencing for detection of fungi in formalin- fixed, paraffin-embedded tissues: correlation with histopathology and clinical applications. J Mol Diagn 22:1287-1293. https://doi.org/10.1016/ j.jmoldx.2020.06.017.
  160. Lau AF, Walchak RC, Miller HB, Slechta ES, Kamboj K, Riebe K, Robertson AE, Gilbreath JJ, Mitchell KF, Wallace MA, Bryson AL, Balada-Llasat JM, Bulman A, Buchan BW, Burnham CD, Butler-Wu S, Desai U, Doern CD, Hanson KE, Henderson CM, Kostrzewa M, Ledeboer NA, Maier T, Pancholi P, Schuetz AN, Shi G, Wengenack NL, Zhang SX, Zelazny AM, Frank KM. 2019. Multicenter study demonstrates standardization requirements for mold identification by MALDI-TOF MS. Front Microbiol 10:2098. https://doi.org/10.3389/fmicb.2019.02098.
  161. Wilkendorf LS, Bowles E, Buil JB, van der Lee HAL, Posteraro B, Sanguinetti M, Verweij PE. 2020. Update on matrix-assisted laser desorp- tion ionization-time of flight mass spectrometry identification of fila- mentous fungi. J Clin Microbiol 58:e01263-20. https://doi.org/10.1128/ JCM.01263-20.
  162. Rychert J, Slechta ES, Barker AP, Miranda E, Babady NE, Tang YW, Gibas C, Wiederhold N, Sutton D, Hanson KE. 2017. Multicenter evaluation of the Vitek MS v3.0 system for the identification of filamentous fungi. J Clin Microbiol 56:e01353-17. https://doi.org/10.1128/JCM.01353-17.
  163. McMullen AR, Wallace MA, Pincus DH, Wilkey K, Burnham CA. 2016. Eval- uation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of clinically relevant filamentous fungi. J Clin Microbiol 54:2068-2073. https://doi.org/10 .1128/JCM.00825-16.
  164. Lau AF, Drake SK, Calhoun LB, Henderson CM, Zelazny AM. 2013. Devel- opment of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser de- sorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:828-834. https://doi.org/10.1128/JCM.02852-12.
  165. Becker PT, de Bel A, Martiny D, Ranque S, Piarroux R, Cassagne C, Detandt M, Hendrickx M. 2014. Identification of filamentous fungi iso- lates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library. Med Mycol 52:826-834. https://doi .org/10.1093/mmy/myu064.
  166. Gautier M, Ranque S, Normand AC, Becker P, Packeu A, Cassagne C, L'Ollivier C, Hendrickx M, Piarroux R. 2014. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: revolutionizing clinical laboratory diagnosis of mould infections. Clin Microbiol Infect 20:1366-1371. https://doi.org/10.1111/1469-0691.12750.
  167. Lionakis MS, Bodey GP, Tarrand JJ, Raad II, Kontoyiannis DP. 2004. The significance of blood cultures positive for emerging saprophytic moulds in cancer patients. Clin Microbiol Infect 10:922-925. https://doi.org/10 .1111/j.1469-0691.2004.00933.x.
  168. Nucci M, Anaissie E. 2007. Fusarium infections in immunocompromised patients. Clin Microbiol Rev 20:695-704. https://doi.org/10.1128/CMR .00014-07.
  169. Azar MM, Hage CA. 2017. Laboratory diagnostics for histoplasmosis. J Clin Microbiol 55:1612-1620. https://doi.org/10.1128/JCM.02430-16.
  170. Vetter E, Torgerson C, Feuker A, Hughes J, Harmsen S, Schleck C, Horstmeier C, Roberts G, Cockerill F, III. 2001. Comparison of the BACTEC MYCO/F lytic bottle to the isolator tube, BACTEC Plus Aerobic F/bottle, and BACTEC Anaerobic Lytic/10 bottle and comparison of the BACTEC Plus Aerobic F/bottle to the Isolator tube for recovery of bacteria, myco- bacteria, and fungi from blood. J Clin Microbiol 39:4380-4386. https:// doi.org/10.1128/JCM.39.12.4380-4386.2001.
  171. Campigotto A, Richardson SE, Sebert M, McElvania TeKippe E, Chakravarty A, Doern CD. 2016. Low utility of pediatric isolator blood culture system for detection of fungemia in children: a 10-year review. J Clin Microbiol 54:2284-2287. https://doi.org/10.1128/JCM.00578-16.
  172. Armstrong AE, Rossoff J, Hollemon D, Hong DK, Muller WJ, Chaudhury S. 2019. Cell-free DNA next-generation sequencing successfully detects in- fectious pathogens in pediatric oncology and hematopoietic stem cell transplant patients at risk for invasive fungal disease. Pediatr Blood Can- cer 66:e27734. https://doi.org/10.1002/pbc.27734.
  173. Hong DK, Blauwkamp TA, Kertesz M, Bercovici S, Truong C, Banaei N. 2018. Liquid biopsy for infectious diseases: sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn Microbiol Infect Dis 92:210-213. https://doi.org/10.1016/j.diagmicrobio .2018.06.009.
  174. Jarvis JN, Percival A, Bauman S, Pelfrey J, Meintjes G, Williams GN, Longley N, Harrison TS, Kozel TR. 2011. Evaluation of a novel point-of- care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis 53:1019-1023. https://doi.org/10.1093/cid/cir613.
  175. Kabanda T, Siedner MJ, Klausner JD, Muzoora C, Boulware DR. 2014. Point-of-care diagnosis and prognostication of cryptococcal meningitis with the cryptococcal antigen lateral flow assay on cerebrospinal fluid. Clin Infect Dis 58:113-116. https://doi.org/10.1093/cid/cit641.
  176. Mercier T, Dunbar A, de Kort E, Schauwvlieghe A, Reynders M, Guldentops E, Blijlevens NMA, Vonk AG, Rijnders B, Verweij PE, Lagrou K, Maertens J. 2020. Lateral flow assays for diagnosing invasive pulmonary aspergillosis in adult hematology patients: a comparative multicenter study. Med Mycol 58:444-452. https://doi.org/10.1093/mmy/myz079.
  177. Jenks JD, Prattes J, Frank J, Spiess B, Mehta SR, Boch T, Buchheidt D, Hoenigl M. 2020. Performance of the bronchoalveolar lavage fluid asper- gillus galactomannan lateral flow assay with cube reader for diagnosis of invasive pulmonary aspergillosis: a multicenter cohort study. Clin Infect Dis https://doi.org/10.1093/cid/ciaa1281.
  178. Cáceres DH, Gómez BL, Tobón AM, Chiller TM, Lindsley MD. 2020. Evalu- ation of a Histoplasma antigen lateral flow assay for the rapid diagnosis of progressive disseminated histoplasmosis in Colombian patients with AIDS. Mycoses 63:139-144. https://doi.org/10.1111/myc.13023.
  179. Donovan FM, Ramadan FA, Khan SA, Bhaskara A, Lainhart WD, Narang AT, Mosier JM, Ellingson KD, Bedrick EJ, Saubolle MA, Galgiani JN. 2020. Comparison of a novel rapid lateral flow assay to enzyme immunoassay results for early diagnosis of coccidioidomycosis. Clin Infect Dis https:// doi.org/10.1093/cid/ciaa1205.
  180. Tracy MC, Moss RB. 2018. The myriad challenges of respiratory fungal infection in cystic fibrosis. Pediatr Pulmonol 53:S75-S85. https://doi.org/ 10.1002/ppul.24126.
  181. CFF. 2019. 2019 patient registry snapshot. Cystic Fibrosis Foundation, Be- thesda, MD. https://www.cff.org/Research/Researcher-Resources/Patient -Registry/2019-Cystic-Fibrosis-Foundation-Patient-Registry-Snapshot/.
  182. Farrell PM, White TB, Ren CL, Hempstead SE, Accurso F, Derichs N, Howenstine M, McColley SA, Rock M, Rosenfeld M, Sermet-Gaudelus I, Southern KW, Marshall BC, Sosnay PR. 2017. Diagnosis of cystic fibrosis: consensus guidelines from the cystic fibrosis foundation. J Pediatr 181S: S4-S15. https://doi.org/10.1016/j.jpeds.2016.09.064.
  183. Hong G, Alby K, Ng SCW, Fleck V, Kubrak C, Rubenstein RC, Dorgan DJ, Kawut SM, Hadjiliadis D. 2020. The presence of Aspergillus fumigatus is associated with worse respiratory quality of life in cystic fibrosis. J Cyst Fibros 19:125-130. https://doi.org/10.1016/j.jcf.2019.08.008.
  184. Engel TGP, Slabbers L, de Jong C, Melchers WJG, Hagen F, Verweij PE, Merkus P, Meis JF, Dutch Cystic Fibrosis Fungal Collection Consortium. 2019. Prevalence and diversity of filamentous fungi in the airways of cystic fibrosis patients: a Dutch, multicentre study. J Cyst Fibros 18:221-226. https://doi.org/10.1016/j.jcf.2018.11.012.
  185. Blanchard AC, Waters VJ. 2019. Microbiology of cystic fibrosis airway dis- ease. Semin Respir Crit Care Med 40:727-736. https://doi.org/10.1055/s -0039-1698464.
  186. Hong G, Miller HB, Allgood S, Lee R, Lechtzin N, Zhang SX. 2017. Use of selective fungal culture media increases rates of detection of fungi in the respiratory tract of cystic fibrosis patients. J Clin Microbiol 55:1122-1130. https://doi.org/10.1128/JCM.02182-16.
  187. Engel TGP, Tehupeiory-Kooreman M, Melchers WJG, Reijers MH, Merkus P, Verweij PE. 2020. Evaluation of a new culture protocol for enhancing fungal detection rates in respiratory samples of cystic fibrosis patients. J Fungi (Basel) 6:82. https://doi.org/10.3390/jof6020082.
  188. Delhaes L, Touati K, Faure-Cognet O, Cornet M, Botterel F, Dannaoui E, Morio F, Le Pape P, Grenouillet F, Favennec L, Le Gal S, Nevez G, Duhamel A, Borman A, Saegeman V, Lagrou K, Gomez E, Carro ML, Canton R, Campana S, Buzina W, Chen S, Meyer W, Roilides E, Simitsopoulou M, Manso E, Cariani L, Biffi A, Fiscarelli E, Ricciotti G, Pihet M, Bouchara JP. 2019. Prevalence, geographic risk factor, and develop- ment of a standardized protocol for fungal isolation in cystic fibrosis: results from the international prospective study "MFIP." J Cyst Fibros 18:212-220. https://doi.org/10.1016/j.jcf.2018.10.001.
  189. Schwarz C, Vandeputte P, Rougeron A, Giraud S, Dugé de Bernonville T, Duvaux L, Gastebois A, Alastruey-Izquierdo A, Martín-Gomez MT, Mazuelos EM, Sole A, Cano J, Pemán J, Quindos G, Botterel F, Bougnoux ME, Chen S, Delhaès L, Favennec L, Ranque S, Sedlacek L, Steinmann J, Vazquez J, Williams C, Meyer W, Le Gal S, Nevez G, Fleury M, Papon N, Symoens F, Bouchara JP, ECMM/ISHAM Working Group Fungal Respira- tory Infections in Cystic Fibrosis (Fri-CF). 2018. Developing collaborative works for faster progress on fungal respiratory infections in cystic fibro- sis. Med Mycol 56:42-59. https://doi.org/10.1093/mmy/myx106.
  190. Hendrickson JA, Hu C, Aitken SL, Beyda N. 2019. Antifungal resistance: a concerning trend for the present and future. Curr Infect Dis Rep 21:47. https://doi.org/10.1007/s11908-019-0702-9.
  191. CLSI. 2020. Performance standards for antifungal susceptibility testing of filamentous fungi. Approved guideline; CLSI document M61Ed2. Clini- cal and Laboratory Standards Institute, Wayne, PA.
  192. CLSI. 2020. Performance standards for antifungal susceptibility testing of yeasts. Approved guideline; CLSI document M60ed2. Clinical and Lab- oratory Standards Institute, Wayne, PA.
  193. Lockhart SR. 2019. Candida auris and multidrug resistance: defining the new normal. Fungal Genet Biol 131:103243. https://doi.org/10.1016/j .fgb.2019.103243.
  194. CLSI. 2018. Epidemiologic cutoff values for antifungal susceptibility test- ing. Approved guideline; CLSI document M59Ed2. Clinical and Labora- tory Standards Institute, Wayne, PA.
  195. Berkow EL, Lockhart SR, Ostrosky-Zeichner L. 2020. Antifungal suscepti- bility testing: current approaches. Clin Microbiol Rev 33:e00069-19.
  196. Perfect JR. 2017. The antifungal pipeline: a reality check. Nat Rev Drug Discov 16:603-616. https://doi.org/10.1038/nrd.2017.46.