Predicting pathological complete response to neoadjuvant chemotherapy in breast cancer from routine diagnostic histopathology biopsies (original) (raw)

Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre-treatment tumor biopsies

Scientific Reports

Complete pathological response (pCR) to neoadjuvant chemotherapy (NAC) is a prognostic factor for breast cancer (BC) patients and is correlated with improved survival. However, pCR rates are variable to standard NAC, depending on BC subtype. This study investigates quantitative digital histopathology coupled with machine learning (ML) to predict NAC response a priori. Clinicopathologic data and digitized slides of BC core needle biopsies were collected from 149 patients treated with NAC. The nuclei within the tumor regions were segmented on the histology images of biopsy samples using a weighted U-Net model. Five pathomic feature subsets were extracted from segmented digitized samples, including the morphological, intensity-based, texture, graph-based and wavelet features. Seven ML experiments were conducted with different feature sets to develop a prediction model of therapy response using a gradient boosting machine with decision trees. The models were trained and optimized using ...

Multimodal deep learning models for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer

Scientific Reports

The achievement of the pathologic complete response (pCR) has been considered a metric for the success of neoadjuvant chemotherapy (NAC) and a powerful surrogate indicator of the risk of recurrence and long-term survival. This study aimed to develop a multimodal deep learning model that combined clinical information and pretreatment MR images for predicting pCR to NAC in patients with breast cancer. The retrospective study cohort consisted of 536 patients with invasive breast cancer who underwent pre-operative NAC. We developed a deep learning model to fuse high-dimensional MR image features and the clinical information for the pretreatment prediction of pCR to NAC in breast cancer. The proposed deep learning model trained on all datasets as clinical information, T1-weighted subtraction images, and T2-weighted images shows better performance with area under the curve (AUC) of 0.888 as compared to the model using only clinical information (AUC = 0.827, P

Deep learning models for histologic grading of breast cancer and association with disease prognosis

npj Breast Cancer

Histologic grading of breast cancer involves review and scoring of three well-established morphologic features: mitotic count, nuclear pleomorphism, and tubule formation. Taken together, these features form the basis of the Nottingham Grading System which is used to inform breast cancer characterization and prognosis. In this study, we develop deep learning models to perform histologic scoring of all three components using digitized hematoxylin and eosin-stained slides containing invasive breast carcinoma. We first evaluate model performance using pathologist-based reference standards for each component. To complement this typical approach to evaluation, we further evaluate the deep learning models via prognostic analyses. The individual component models perform at or above published benchmarks for algorithm-based grading approaches, achieving high concordance rates with pathologist grading. Further, prognostic performance using deep learning-based grading is on par with that of pat...

Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy

Scientific Reports, 2021

The treatment of patients with ERBB2 (HER2)-positive breast cancer with anti-ERBB2 therapy is based on the detection of ERBB2 gene amplification or protein overexpression. Machine learning (ML) algorithms can predict the amplification of ERBB2 based on tumor morphological features, but it is not known whether ML-derived features can predict survival and efficacy of anti-ERBB2 treatment. In this study, we trained a deep learning model with digital images of hematoxylin–eosin (H&E)-stained formalin-fixed primary breast tumor tissue sections, weakly supervised by ERBB2 gene amplification status. The gene amplification was determined by chromogenic in situ hybridization (CISH). The training data comprised digitized tissue microarray (TMA) samples from 1,047 patients. The correlation between the deep learning–predicted ERBB2 status, which we call H&E-ERBB2 score, and distant disease-free survival (DDFS) was investigated on a fully independent test set, which included whole-slide tumor im...

Assessment of Digital Pathology Imaging Biomarkers Associated with Breast Cancer Histologic Grade

Current Oncology

Background: Evaluating histologic grade for breast cancer diagnosis is standard and associated with prognostic outcomes. Current challenges include the time required for manual microscopic evaluation and interobserver variability. This study proposes a computer-aided diagnostic (CAD) pipeline for grading tumors using artificial intelligence. Methods: There were 138 patients included in this retrospective study. Breast core biopsy slides were prepared using standard laboratory techniques, digitized, and pre-processed for analysis. Deep convolutional neural networks (CNNs) were developed to identify the regions of interest containing malignant cells and to segment tumor nuclei. Imaging-based features associated with spatial parameters were extracted from the segmented regions of interest (ROIs). Clinical datasets and pathologic biomarkers (estrogen receptor, progesterone receptor, and human epidermal growth factor 2) were collected from all study subjects. Pathologic, clinical, and im...

Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients

Investigative Radiology

The aim of this study was to assess the potential of machine learning with multiparametric magnetic resonance imaging (mpMRI) for the early prediction of pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) and of survival outcomes in breast cancer patients. Materials and Methods: This institutional review board-approved prospective study included 38 women (median age, 46.5 years; range, 25-70 years) with breast cancer who were scheduled for NAC and underwent mpMRI of the breast at 3 T with dynamic contrast-enhanced (DCE), diffusion-weighted imaging (DWI), and T2-weighted imaging before and after 2 cycles of NAC. For each lesion, 23 features were extracted: qualitative T2-weighted and DCE-MRI features according to BI-RADS (Breast Imaging Reporting and Data System), quantitative pharmacokinetic DCE features (mean plasma flow, volume distribution, mean transit time), and DWI apparent diffusion coefficient (ADC) values. To apply machine learning to mpMRI, 8 classifiers including linear support vector machine, linear discriminant analysis, logistic regression, random forests, stochastic gradient descent, decision tree, adaptive boosting, and extreme gradient boosting (XGBoost) were used to rank the features. Histopathologic residual cancer burden (RCB) class (with RCB 0 being a pCR), recurrence-free survival (RFS), and disease-specific survival (DSS) were used as the standards of reference. Classification accuracy with area under the receiving operating characteristic curve (AUC) was assessed using all the extracted qualitative and quantitative features for pCR as defined by RCB class, RFS, and DSS using recursive feature elimination. To overcome overfitting, 4-fold cross-validation was used. Results: Machine learning with mpMRI achieved stable performance as shown by mean classification accuracies for the prediction of RCB class (AUC, 0.86) and DSS (AUC, 0.92) based on XGBoost and the prediction of RFS (AUC, 0.83) with logistic regression. The XGBoost classifier achieved the most stable performance with high accuracies compared with other classifiers. The most relevant features for the prediction of RCB class were as follows: changes in lesion size, complete pattern of shrinkage, and mean transit time on DCE-MRI; minimum ADC on DWI; and peritumoral edema on T2-weighted imaging. The most relevant features for prediction of RFS were as follows: volume distribution, mean plasma flow, and mean transit time; DCE-MRI lesion size; minimum, maximum, and mean ADC with DWI. The most relevant features for prediction of DSS were as follows: lesion size, volume distribution, and mean plasma flow on DCE-MRI, and maximum ADC with DWI. Conclusions: Machine learning with mpMRI of the breast enables early prediction of pCR to NAC as well as survival outcomes in breast cancer patients with high accuracy and thus may provide valuable predictive information to guide treatment decisions.

Robustness Evaluation of a Deep Learning Model on Sagittal and Axial Breast DCE-MRIs to Predict Pathological Complete Response to Neoadjuvant Chemotherapy

Journal of Personalized Medicine

To date, some artificial intelligence (AI) methods have exploited Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to identify finer tumor properties as potential earlier indicators of pathological Complete Response (pCR) in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). However, they work either for sagittal or axial MRI protocols. More flexible AI tools, to be used easily in clinical practice across various institutions in accordance with its own imaging acquisition protocol, are required. Here, we addressed this topic by developing an AI method based on deep learning in giving an early prediction of pCR at various DCE-MRI protocols (axial and sagittal). Sagittal DCE-MRIs refer to 151 patients (42 pCR; 109 non-pCR) from the public I-SPY1 TRIAL database (DB); axial DCE-MRIs are related to 74 patients (22 pCR; 52 non-pCR) from a private DB provided by Istituto Tumori “Giovanni Paolo II” in Bari (Italy). By merging the features extracted from baseline...

Breast cancer outcome prediction with tumour tissue images and machine learning

Breast Cancer Research and Treatment, 2019

Purpose Recent advances in machine learning have enabled better understanding of large and complex visual data. Here, we aim to investigate patient outcome prediction with a machine learning method using only an image of tumour sample as an input. Methods Utilising tissue microarray (TMA) samples obtained from the primary tumour of patients (N = 1299) within a nationwide breast cancer series with long-term-follow-up, we train and validate a machine learning method for patient outcome prediction. The prediction is performed by classifying samples into low or high digital risk score (DRS) groups. The outcome classifier is trained using sample images of 868 patients and evaluated and compared with human expert classification in a test set of 431 patients. Results In univariate survival analysis, the DRS classification resulted in a hazard ratio of 2.10 (95% CI 1.33-3.32, p = 0.001) for breast cancer-specific survival. The DRS classification remained as an independent predictor of breast cancer-specific survival in a multivariate Cox model with a hazard ratio of 2.04 (95% CI 1.20-3.44, p = 0.007). The accuracy (C-index) of the DRS grouping was 0.60 (95% CI 0.55-0.65), as compared to 0.58 (95% CI 0.53-0.63) for human expert predictions based on the same TMA samples. Conclusions Our findings demonstrate the feasibility of learning prognostic signals in tumour tissue images without domain knowledge. Although further validation is needed, our study suggests that machine learning algorithms can extract prognostically relevant information from tumour histology complementing the currently used prognostic factors in breast cancer.

Multimodal Prediction of Breast Cancer Recurrence Assays and Risk of Recurrence

Gene expression-based recurrence assays are strongly recommended to guide the use of chemotherapy in hormone receptor-positive, HER2-negative breast cancer, but such testing is expensive, can contribute to delays in care, and may not be available in low-resource settings. Here, we describe the training and independent validation of a deep learning model that predicts recurrence assay result and risk of recurrence using both digital histology and clinical risk factors. We demonstrate that this approach outperforms an established clinical nomogram (area under the receiver operating characteristic curve of 0.833 versus 0.765 in an external validation cohort, p = 0.003), and can identify a subset of patients with excellent prognoses who may not need further genomic testing.