Helium isotopes in Plinian and inter-Plinian volcanic products of Vesuvius, Italy (original) (raw)

Stable Isotope (δ18O, δD) Composition of Magmatic Fluids Exsolved from an Active Alkaline Magma Chamber—The Case of the AD 79 Magma Chamber of Vesuvius

Minerals

This work documents, for the first time, the calculated oxygen and hydrogen isotope composition of the brines exsolved from the peripheral margin of the active magma alkaline chamber that fed the AD 79 (“Pompei”) eruption of Vesuvius. The exsolved hydrosaline fluids had a constant δ18O composition and a variable δD composition, showing a general lowering of δD at nearly constant δ18O content. We argue that the progressive fluid exsolution at the upper peripheral parts of the AD 79 magma chamber may explain this isotopic path. The modeling of the evolution of the hydrogen isotope composition of water remaining dissolved in the melt, and of the exsolved fluid as a consequence of progressive degassing, would favor multiple fluid-release events from the magmatic reservoir. A schematic model on the pulsed accumulation and release of fluids at the top of the magmatic reservoir prior to the eruption is thus proposed. The assessment of the stable isotope composition of the fluids exsolved f...

Oxygen isotope geochemistry of mafic magmas at Mt. Vesuvius

2010

Pumice and scoria from different eruptive layers of Mt. Vesuvius volcanic products contain mafic minerals consisting of High-Fo olivine and Diopsidic Pyroxene. These phases were crystallized in unerupted trachibasaltic to tephritic magmas, and were brought to surface by large phonolitic/tephri-phonolitic (e.g. Avellino and Pompei) and/or of tephritic and phono-tephritic (Pollena) eruptions. A large set of these mm-sized crystals was accurately separated from selected juvenile material and measured for their chemical compositions (EPMA, Laser Ablation ICP-MS) and 18O/16O ratios (conventional laser fluorination) to constrain the nature and evolution of the primary magmas at Mt. Vesuvius. Uncontaminated mantle δ18O values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary melts during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). At Mt. Vesuvius, measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas. Trace element composition constrains the near primary nature of the phases. Published data on volatile content of melt inclusions hosted in these crystals reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting that crystal growth occurred in a reservoir at about 8-10 km depth. Recently, experimental data have suggested massive carbonate assimilation (up to about 20%) to derive potassic alkali magmas from trachybasaltic melts. Accordingly, the δ18O variability and the trace element content of the studied minerals suggest possible contamination of primary melts by an O-isotope enriched, REE-poor contaminant like the limestone of Vesuvius basement. Low, nearly primitive δ18O values are observed for olivine from Pompeii eruption, although still above the range of typical mantle minerals. The δ18Oolivine and δ18Ocpxof the minerals from all the studied eruptions define variable degrees of carbonate interaction and magma crystallization for the different eruptions, and possibly within the same eruption, and show evidence of oxygen isotope equilibrium at high temperature. However, energy-constrained AFC model suggest that carbonate assimilation was limited. On the basis of our data, we suggest that interaction between magma and a fluxing, decarbonation-derived CO2 fluid may be partly accounted for the measured O-isotope compositions.