Speed limit of the insulator–metal transition in magnetite (original) (raw)

Abstract

sparkles

AI

Speed limit of the insulator–metal transition in magnetite is established through a two-step process that includes the rapid destruction of trimerons followed by phase separation on a picosecond timescale. Key findings indicate the sudden breakdown of electronic order with a subsequent slower evolution towards a metallic state, thus providing insights into ultrafast dynamics relevant for oxide electronics.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (30)

  1. Verwey, E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 328 (1939).
  2. Nazarenko, E. et al. Resonant X-Ray Diffraction Studies on the Charge Ordering in Magnetite. Phys. Rev. Lett. 97, 056403 (2006).
  3. Lorenzo, J. E. et al. Charge and Orbital Correlations at and above the Verwey Phase Transition in Magnetite. Phys. Rev. Lett. 101, 226401 (2008).
  4. Garcia, J. et al. Reexamination of the Temperature Dependences of Resonant Reflections in Highly Stoichiometric Magnetite. Phys. Rev. Lett. 102, 176405 (2009).
  5. Piekarz, P., Parlinski, K. & Oles, A. M. Origin of the Verwey transition in magnetite: Group theory, electronic structure, and lattice dynamics study. Phys. Rev. B 76, 165124 (2007).
  6. Uzu, H. & Tanaka, A. Complex-orbital order in Fe3O4 and mechanism of the Verwey transition. J. Phys. Soc. of Japan 77, 074711 (2008).
  7. Garcia, J. & Subias, G. The Verwey transition -a new perspective. Journal of Physics: Condensed Matter 16, R145 (2004).
  8. Weng, S.-C., et al. Direct Observation of Charge Ordering in Magnetite Using Resonant Multiwave X-Ray Diffraction. Phys. Rev. Lett. 108, 146404 (2012).
  9. Senn, M. S., Wright, J. P. & Attfield, J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 481, 173 (2012).
  10. Yang, Z., Ko, C. & Ramanatha, S. Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions. Annual Review of Materials Research 41, 337 (2011).
  11. Fujii, Y., Shirane, G. & Yamada, Y. Study of the 123-K phase transition of magnetite by critical neutron scattering. Phys. Rev. B 11, 2036 (1975).
  12. Shapiro, S. M., Iizumi, M. & Shirane, G. Neutron scattering study of the diffuse critical scattering associated with the Verwey transition in magnetite. Phys. Rev. B 14, 200 (1976).
  13. Weber, F. et al. Signature of checkerboard fluctuations in the phonon spectra of a possible polaronic metal La1.2Sr1.8Mn2O7. Nature Mater. 8, 798 (2009).
  14. Imada, M., Fujimori, A. & Tokura, Y. Metal insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).
  15. Uehara, M., Mori, S., Chen, C. H. & Cheong, S.-W. Percolative phase separation underlies colossal magnetoresistance in mixed valent mangatite. Nature 399, 560 (1999).
  16. Lai, K., et al. Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film. Science 329, 190 (2010).
  17. Massee, F. et al. Bilayer manganites: polarons on the verge of a metallic breakdown. Nature Phys. 7, 560 (2011).
  18. Pontius, N. et al. Time-resolved resonant soft x-ray diffraction with free-electron lasers: Femtosecond dynamics across the Verwey transition in magnetite. Appl. Phys. Lett. 98, 182504 (2011).
  19. Park, S. K., Ishikawa, T. & Tokura, Y. Charge-gap formation upon the Verwey transition in Fe3O4. Phys. Rev. B 58, 3717 (1998).
  20. Novelli F., et al. Ultrafast optical spectroscopy of the lowest energy excitations in the Mott insulator compound YVO3: Evidence for Hubbard-type excitons, Phys. Rev. B 86, 165135 (2012).
  21. Emma, P. et al. First lasing and operation of an Angstrom-wavelength free-electron laser. Nature Photon. 4, 641 (2010).
  22. Blasco, J., Garcia, J. & Subias, G. Structural transformation in magnetite below the Verwey transition. Phys. Rev. B 83, 104105 (2011).
  23. Huang, D. J. et al. Charge-Orbital Ordering and Verwey Transition in Magnetite Measured by Resonant Soft X-Ray Scattering. Phys. Rev. Lett. 96, 096401 (2006).
  24. Schlappa, J. et al. Direct Observation of t2g Orbital Ordering in Magnetite. Phys. Rev. Lett. 100, 026406 (2008).
  25. Tanaka, A. et al. Symmetry of Orbital Order in Fe3O4 Studied by Fe L2,3 Resonant X-Ray Diffraction. Phys. Rev. Lett. 108, 227203 (2012).
  26. Lee, W. S. et al. Phase fluctuations and the absence of topological defects in a photo-excited charge-ordered nickelate. Nature Commun. 3, 838 (2012).
  27. Samuelson, E. J. & Steinsvoll O. Low-Energy Phonons in Magnetite. Phys. Stat. Sol. (b) 61, 615 (1974).
  28. Wu, Y. et al. High frequency scaled graphene transistors on diamond-like carbon. Nature (London) 472, 74 (2011).
  29. Heimann, P. et al. Linac Coherent Light Source soft x-ray materials science instrument optical design and monochromator commissioning. Rev. Sci. Instrum. 82, 093104 (2011).
  30. Doering, D. et al. Development of a compact fast CCD camera and resonant soft x-ray scattering endstation for time-resolved pump-probe experiments, Rev. Sci. Instrum. 82, 073303 (2011).