Reversal of Quadriplegia with Ultrasound-guided Dry Needling of Muscles Affected by Critical Illness Polyneuromyopathy/Neuropathy (original) (raw)
Related papers
Clinical review: Critical illness polyneuropathy and myopathy
Critical Care, 2008
Critical illness polyneuropathy (CIP) and myopathy (CIM) are major complications of severe critical illness and its management. CIP/ CIM prolongs weaning from mechanical ventilation and physical rehabilitation since both limb and respiratory muscles can be affected. Among many risk factors implicated, sepsis, systemic inflammatory response syndrome, and multiple organ failure appear to play a crucial role in CIP/CIM. This review focuses on epidemiology, diagnostic challenges, the current understanding of pathophysiology, risk factors, important clinical consequences, and potential interventions to reduce the incidence of CIP/CIM. CIP/CIM is associated with increased hospital and intensive care unit (ICU) stays and increased mortality rates. Recently, it was shown in a single centre that intensive insulin therapy significantly reduced the electrophysiological incidence of CIP/CIM and the need for prolonged mechanical ventilation in patients in a medical or surgical ICU for at least 1 week. The electrophysiological diagnosis was limited by the fact that muscle membrane inexcitability was not detected. These results have yet to be confirmed in a larger patient population. One of the main risks of this therapy is hypoglycemia. Also, conflicting evidence concerning the neuromuscular effects of corticosteroids exists. A systematic review of the available literature on the optimal approach for preventing CIP/CIM seems warranted.
Review Clinical review: Critical illness polyneuropathy and myopathy
2008
Critical illness polyneuropathy (CIP) and myopathy (CIM) are major complications of severe critical illness and its management. CIP/ CIM prolongs weaning from mechanical ventilation and physical rehabilitation since both limb and respiratory muscles can be affected. Among many risk factors implicated, sepsis, systemic inflammatory response syndrome, and multiple organ failure appear to play a crucial role in CIP/CIM. This review focuses on epidemiology, diagnostic challenges, the current understanding of pathophysiology, risk factors, important clinical consequences, and potential interventions to reduce the incidence of CIP/CIM. CIP/CIM is associated with increased hospital and intensive care unit (ICU) stays and increased mortality rates. Recently, it was shown in a single centre that intensive insulin therapy significantly reduced the electrophysiological incidence of CIP/CIM and the need for prolonged mechanical ventilation in patients in a medical or surgical ICU for at least 1 week. The electrophysiological diagnosis was limited by the fact that muscle membrane inexcitability was not detected. These results have yet to be confirmed in a larger patient population. One of the main risks of this therapy is hypoglycemia. Also, conflicting evidence concerning the neuromuscular effects of corticosteroids exists. A systematic review of the available literature on the optimal approach for preventing CIP/CIM seems warranted.
Neuromuscular Disorders in Critically Ill Patients: Review and Update
Journal of Clinical Neuromuscular Disease, 2011
Neuromuscular disorders that are diagnosed in the intensive care unit (ICU) usually cause substantial limb weakness and contribute to ventilatory dysfunction. Although some lead to ICU admission, ICU-acquired disorders, mainly critical illness myopathy (CIM) and critical illness polyneuropathy (CIP), are more frequent and are associated with considerable morbidity. Approximately 25% to 45% of patients admitted to the ICU develop CIM, CIP, or both. Their clinical features often overlap; therefore, nerve conduction studies and electromyography are particularly helpful diagnostically, and more sophisticated electrodiagnostic studies and histopathologic evaluation are required in some circumstances. A number of prospective studies have identified risk factors for CIP and CIM, but their limitations often include the inability to separate CIM from CIP. Animal models reveal evidence of a channelopathy in both CIM and CIP, and human studies also identified axonal degeneration in CIP and myosin loss in CIM. Outcomes are variable. They tend to be better with CIM, and some patients have longstanding disabilities. Future studies of well-characterized patients with CIP and CIM should refine our understanding of risk factors, outcomes, and pathogenic mechanisms, leading to better interventions.
Journal of anesthesia, 2015
Thirty to fifty percent of critically ill patients admitted to the intensive care unit suffer from generalized neuromuscular weakness due to critical illness polyneuropathy, critical illness myopathy, or a combination of them, thus prolonging mechanical ventilation and their intensive care unit stay. A distinction between these syndromes and other neuromuscular abnormalities beginning either before or after ICU admission is necessary. These intensive care unit-related diseases are associated with both elevated mortality rates and increased morbidity rates. Generally, over 50 % of patients will completely recover. Most of them recover after 4-12 weeks, but some patients have been reported to keep on suffering from muscle weakness for at least 4 months. Prevention has a key role in the management of critical illness neuromuscular disorders, as no specific therapy has been suggested. Either prevention or aggressive treatment of sepsis can prevent critical illness polyneuropathy and cri...
Critical illness polyneuromyopathy: a major problem in a general intensive care unit
Introduction Community-acquired pneumonia remains a common condition worldwide. It is associated with significant morbidity and mortality. The aim of this study was to evaluate conditions that could predict a poor outcome. Design Retrospective analyse of 69 patients admitted to the ICU from 1996 to 2003. Demographic data included age, sex and medical history. Etiologic agents, multiorgan dysfunction, nosocomial infections, SAPS II and PORT scores were recorded for each patient. For statistical analysis we used a t test, chi-square test and Mann-Whitney U test on SPSS ® . A value of P less than 0.05 was considered significant. Results Forty-seven patients were male and 22 patients were female. Mean age was 52 years. Sixty-seven percent had serious pre-morbid conditions including pulmonary disease (34.8%), cardiac problems (36.2%), diabetes (13%) and chronic liver disease (5.8%); 40.6% were smokers, drug abusers or alcohol dependents. Sixtyeight patients required invasive mechanical ventilation. The average length of ventilation was 13.5 days, median 8 days. The mean SAPS II score was 40.14 and the mean PORT score was 141. The mortality rate was 27.5% (SAPS II estimated mortality, 35%). Complications reported were ARDS (40.6%), septic shock (34.8%), acute renal failure (2.9%), cardiac arrest (8.7%) and nosocomial infeccions (46.4%). Mortality rates were higher for previous hepatic (75%) and metabolic (33%) diseases. We found a close association between crude mortality and SAPS II score (P = 0.003) and development of complications (P = 0.0028). Respiratory dysfunction (P = 0.006) and septic shock (P = 0.022) were most significantly related to mortality. No significant differences were founded regarding age, comorbidities, PORT score, etiologic agents, nosocomial infections and length of invasive mechanical ventilation. Conclusions Previous hepatic chronic disease was strictly related to higher mortality as well as isolation of MRSA. ARDS and septic shock predicted a poor outcome. SAPS II score was the best severity indicator of mortality.
Long-term neuromuscular sequelae of critical illness
Journal of Neurology, 2013
In this observational study, we analyzed the long-term neuromuscular deficits of survivors of critical illness. Intensive care unit-acquired muscular weakness (ICU-AW) is a very common complication of critical illness. Critical illness polyneuropathy (CIP) and critical illness myopathy (CIM) are two main contributors to ICU-AW. ICU-AW is associated with an increased mortality and leads to rehabilitation problems. However, the long-term outcome of ICU-AW and factors influencing it are not well known. We analyzed the medical records of 490 survivors of critical illness, aged 18-75 years and located in the area of the study center. Intensive care unit (ICU) survivors with comorbidities that might influence neuromuscular follow-up examinations, muscle strength, or results of nerve conduction studies, such as renal or hepatic insufficiency, diabetes mellitus, or vitamin deficiency were excluded. A total of 51 patients were finally included in the study. Six to 24 months after discharge from the ICU, we measured the Medical Research Council (MRC) sum score, the Overall Disability Sum score (ODSS), and also performed nerve conduction studies and EMG. For all ICU survivors, the median MRC sum score was 60 (range 47-60) and the median ODSS score was 0 (range 0-8). CIP was diagnosed in 21 patients (41 %). No patient was diagnosed with CIM. Patients with diagnosis of CIP showed a higher median ODSS scores 1 (range 0-8) versus 0 (range 0-5); p < 0.001 and lower median MRC sum scores 56 (range 47-60) versus 60 (range 58-60); p < 0.001. The three main outcome variables MRC sum score, ODSS score and diagnosis of CIP were not related to age, gender, or diagnosis of sepsis. The MRC sum score (r = -0.33; p = 0.02) and the ODSS score (r = 0.31; p = 0.029) were correlated with the APACHE score. There was a trend for an increased APACHE score in patients with diagnosis of CIP 19 (range 6-33) versus 16.5 (range 6-28); p = 0.065. Patients with the diagnosis of CIP had more days of ICU treatment 11 days (range 2-74) versus 4 days (range 1-61); p = 0.015, and had more days of ventilator support 8 days (range 1-59) versus 2 days (range 1-46); p = 0.006. The MRC sum score and the ODSS score were correlated with the days of ICU treatment and with the days of ventilator support. The neuromuscular long-term consequences of critical illness were not severe in our study population. As patients with concomitant diseases and old patients were excluded from this study the result of an overall favorable prognosis of ICU-acquired weakness may not be true for other patient's case-mix. Risk factors for the development of long-term critical illness neuropathy are duration of ICU treatment, duration of ventilator support, and a high APACHE score, but not diagnosis of sepsis. Although ICU-AW can be serious complication of ICU treatment, this should not influence therapeutic decisions, given its favorable long-term prognosis, at least in relatively young patients with no concomitant diseases.
Neuromuscular dysfunction in critical illness: what are we dealing with?
Current Opinion in Anaesthesiology, 2000
Neuromuscular weakness is a very common and debilitating problem for survivors of critical illness. Neurophysiological abnormalities are almost ubiquitous in these patients, and often favour a diagnosis of axonal polyneuropathy, whereas muscle histology, where available, reveals a high incidence of atrophy and necrosis. The precise nature and aetiology of this complex disorder is not yet well understood. Curr Opin Anaesthesiol 13:93±98.