Identification of a novel leukemic-specific splice variant of DNMT3B and its stability (original) (raw)

A Novel DNMT3B Splice Variant Expressed in Tumor and Pluripotent Cells Modulates Genomic DNA Methylation Patterns and Displays Altered DNA Binding

Molecular Cancer Research, 2009

DNA methylation is an epigenetic mark essential for mammalian development, genomic stability, and imprinting. DNA methylation patterns are established and maintained by three DNA methyltransferases: DNMT1, DNMT3A, and DNMT3B. Interestingly, all three DNMTs make use of alternative splicing. DNMT3B has nearly 40 known splice variants expressed in a tissue-and disease-specific manner, but very little is known about the role of these splice variants in modulating DNMT3B function. We describe here the identification and characterization of a novel alternatively spliced form of DNMT3B lacking exon 5 within the N-terminal regulatory domain. This variant, which we term DNMT3B3Δ5 because it is closely related in structure to the ubiquitously expressed DNMT3B3 isoform, is highly expressed in pluripotent cells and brain tissue, is downregulated during differentiation, and is conserved in the mouse. Creation of pluripotent iPS cells from fibroblasts results in marked induction of DNMT3B3Δ5. DNMT3B3Δ5 expression is also altered in human disease, with tumor cell lines displaying elevated or reduced expression depending on their tissue of origin. We then compared the DNA binding and subcellular localization of DNMT3B3Δ5 versus DNMT3B3, revealing that DNMT3B3Δ5 possessed significantly enhanced DNA binding affinity and displayed an altered nuclear distribution. Finally, ectopic overexpression of DNMT3B3Δ5 resulted in repetitive element hypomethylation and enhanced cell growth in a colony formation assay. Taken together, these results demonstrate that DNMT3B3Δ5 may play an important role in stem cell maintenance or differentiation and suggest that sequences encoded by exon 5 influence the functional properties of DNMT3B.

Characterization of the Human DNA Methyltransferase Splice Variant Dnmt1b

Journal of Biological Chemistry, 2000

Tissue-and gene-specific patterns of cytosine-DNA methylation are characteristic features of vertebrate genomes. The generation and proper maintenance of DNA methylation patterns are essential for embryonic development, as demonstrated by the lethal phenotypes of mice with either a targeted disruption of Dnmt1, the gene responsible for the maintenance of DNA methylation, or targeted disruption of Dnmt3a or Dnmt3b, the genes involved in generation of newly formed methylation patterns. Recently, a novel mRNA, Dnmt1b, resulting from alternative splicing of Dnmt1 was identified (Hsu, D. W., Lin, M. J., Lee, T. L., Wen, S. C., Chen, X., and Shen, C. K., (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 9751-9756). The abundance of Dnmt1b mRNA was estimated by semiquantitative reverse transcription polymerase chain reaction and was suggested to encode a major C-5 DNA methyltransferase isoform. Here we report characterization of this novel DNA methyltransferase transcript, Dnmt1b, and its protein product in human cell lines and in freshly isolated human peripheral blood mononuclear cells. The abundance of Dnmt1b transcript, as determined by quantitative RNase protection analysis, was determined to range from 6% to 25% of Dnmt1 in human cells. Second generation antisense inhibitors targeted to the 5-and 3-ends of Dnmt1 inhibited the accumulation of both Dnmt1 and Dnmt1b in cells. Dnmt1b protein purified from a baculovirus expression system was demonstrated to be a functional DNA methyltransferase, and to have Michaelis constants for both DNA and S-adenosyl-L-methionine similar to baculovirus-expressed Dnmt1. However, antibodies raised against Dnmt1b epitopes demonstrated that Dnmt1b protein was present at approximately 2-5% of the level of Dnmt1 and therefore represents only a minor DNA methyltransferase isoform in human cells. The abbreviations used are: DNA MeTase, DNA cytosine-5 methyltransferase; RPA, RNase protection analysis; PBMCs, peripheral blood mononuclear cells; RT-PCR, reverse transcriptase-polymerase chain reaction; NOS1, nitric oxide synthase; VEGF, Vascular endothelial growth factor; kb, kilobase(s); bp, base pair(s).

Variants of DNMT3A cause transcript-specific DNA methylation patterns and affect hematopoietic differentiation

2018

The de novo DNA methyltransferase 3A (DNMT3A) plays pivotal roles in hematopoietic differentiation. In this study, we followed the hypothesis that alternative splicing of DNMT3A has characteristic epigenetic and functional sequels. Specific DNMT3A transcripts were either downregulated or overexpressed in human hematopoietic stem and progenitor cells and this resulted in complementary and transcript-specific DNA methylation and gene expression changes. Functional analysis indicated that particularly transcript 2 (coding for DNMT3A2) activates proliferation and induces loss of a primitive immunophenotype, whereas transcript 4 interferes with colony formation of the erythroid lineage. Notably, in acute myeloid leukemia (AML) expression of transcript 2 correlates with its in vitro DNA methylation and gene expression signatures and is associated with overall survival, indicating that DNMT3A variants impact also on malignancies. Our results demonstrate that specific DNMT3A variants have d...

DNMT3B Variants Regulate DNA Methylation in a Promoter-Specific Manner

Cancer Research, 2007

DNA methyltransferase 3B (DNMT3B) is critical in de novo DNA methylation during development and tumorigenesis. We recently reported the identification of a DNMT3B subfamily, #DNMT3B, which contains at least seven variants, resulting from alternative pre-mRNA splicing. DDNMT3Bs are the predominant expression forms of DNMT3B in human lung cancer. A strong correlation was observed between the promoter methylation of RASSF1A gene but not p16 gene (both frequently inactivated by promoter methylation in lung cancer) and expression of DDNMT3B4 in primary lung cancer, suggesting a role of #DNMT3B in regulating promoterspecific methylation of common tumor suppressor genes in tumorigenesis. In this report, we provide first experimental evidence showing a direct involvement of #DNMT3B4 in regulating RASSF1A promoter methylation in human lung cancer cells. Knockdown of DDNMT3B4 expression by small interfering RNA resulted in a rapid demethylation of RASSF1A promoter and reexpression of RASSF1A mRNA but had no effect on p16 promoter in the lung cancer cells. Conversely, normal bronchial epithelial cells with stably transfected DDNMT3B4 gained an increased DNA methylation in RASSF1A promoter but not p16 promoter. We conclude that promoter DNA methylation can be differentially regulated and #DNMT3Bs are involved in regulation of such promoterspecific de novo DNA methylation.

CD44 alternative splicing senses intragenic DNA methylation in tumors via direct and indirect mechanisms

Nucleic Acids Research, 2021

DNA methylation (meDNA) is a modulator of alternative splicing, and splicing perturbations are involved in tumorigenesis nearly as frequently as DNA mutations. However, the impact of meDNA on tumorigenesis via splicing-mediated mechanisms has not been thoroughly explored. Here, we found that HCT116 colon carcinoma cells inactivated for the DNA methylases DNMT1/3b undergo a partial epithelial to mesenchymal transition associated with increased CD44 variant exon skipping. These skipping events are directly mediated by the loss of intragenic meDNA and the chromatin factors MBD1/2/3 and HP1γ and are also linked to phosphorylation changes in elongating RNA polymerase II. The role of meDNA in alternative splicing was confirmed by using the dCas9/DNMT3b tool. We further tested whether the meDNA level could have predictive value in the MCF10A model for breast cancer progression and in patients with acute lymphoblastic leukemia (B ALL). We found that a small number of differentially spliced ...

Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth

Nature Communications, 2021

Numerous substrates have been identified for Type I and II arginine methyltransferases (PRMTs). However, the full substrate spectrum of the only type III PRMT, PRMT7, and its connection to type I and II PRMT substrates remains unknown. Here, we use mass spectrometry to reveal features of PRMT7-regulated methylation. We find that PRMT7 predominantly methylates a glycine and arginine motif; multiple PRMT7-regulated arginine methylation sites are close to phosphorylations sites; methylation sites and proximal sequences are vulnerable to cancer mutations; and methylation is enriched in proteins associated with spliceosome and RNA-related pathways. We show that PRMT4/5/7-mediated arginine methylation regulates hnRNPA1 binding to RNA and several alternative splicing events. In breast, colorectal and prostate cancer cells, PRMT4/5/7 are upregulated and associated with high levels of hnRNPA1 arginine methylation and aberrant alternative splicing. Pharmacological inhibition of PRMT4/5/7 supp...

CD44 alternative splicing is a sensor of intragenic DNA methylation in tumors

ABSTRACTDNA methylation (meDNA) is a suspected modulator of alternative splicing, while splicing in turn is involved in tumour formations nearly as frequently as DNA mutations. Yet, the impact of meDNA on tumorigenesis via its effect on splicing has not been thoroughly explored. Here, we find that HCT116 colon carcinoma cells inactivated for the DNA methylases DNMT1 and DNMT3b undergo a partial epithelial to mesenchymal transition (EMT) associated with alternative splicing of the CD44 transmembrane receptor. The skipping of CD44 variant exons is in part explained by altered expression or splicing of splicing and chromatin factors. A direct effect of meDNA on alternative splicing was sustained by transient depletion of DNMT1 and the methyl-binding genes MBD1, MBD2, and MBD3. Yet, local changes in intragenic meDNA also altered recruitment of MBD1 protein and of the chromatin factor HP1γ known to alter transcriptional pausing and alternative splicing decisions. We further tested if meD...

ΔDNMT3B variants regulate DNA methylation in a promoter-specific manner

Cancer research, 2007

DNA methyltransferase 3B (DNMT3B) is critical in de novo DNA methylation during development and tumorigenesis. We recently reported the identification of a DNMT3B subfamily, #DNMT3B, which contains at least seven variants, resulting from alternative pre-mRNA splicing. DDNMT3Bs are the predominant expression forms of DNMT3B in human lung cancer. A strong correlation was observed between the promoter methylation of RASSF1A gene but not p16 gene (both frequently inactivated by promoter methylation in lung cancer) and expression of DDNMT3B4 in primary lung cancer, suggesting a role of #DNMT3B in regulating promoterspecific methylation of common tumor suppressor genes in tumorigenesis. In this report, we provide first experimental evidence showing a direct involvement of #DNMT3B4 in regulating RASSF1A promoter methylation in human lung cancer cells. Knockdown of DDNMT3B4 expression by small interfering RNA resulted in a rapid demethylation of RASSF1A promoter and reexpression of RASSF1A mRNA but had no effect on p16 promoter in the lung cancer cells. Conversely, normal bronchial epithelial cells with stably transfected DDNMT3B4 gained an increased DNA methylation in RASSF1A promoter but not p16 promoter. We conclude that promoter DNA methylation can be differentially regulated and #DNMT3Bs are involved in regulation of such promoterspecific de novo DNA methylation.

Truncated DNMT3B Isoform DNMT3B7 Suppresses Growth, Induces Differentiation, and Alters DNA Methylation in Human Neuroblastoma

Cancer Research, 2012

Epigenetic changes in pediatric neuroblastoma may contribute to the aggressive pathophysiology of this disease, but little is known about the basis for such changes. In this study, we examined a role for the DNA methyltransferase DNMT3B, in particular, the truncated isoform DNMT3B7, which is generated frequently in cancer. To investigate if aberrant DNMT3B transcripts alter DNA methylation, gene expression, and phenotypic character in neuroblastoma, we measured DNMT3B expression in primary tumors. Higher levels of DNMT3B7 were detected in differentiated ganglioneuroblastomas compared to undifferentiated neuroblastomas, suggesting that expression of DNMT3B7 may induce a less aggressive clinical phenotype. To test this hypothesis, we investigated the effects of enforced DNMT3B7 expression in neuroblastoma cells, finding a significant inhibition of cell proliferation in vitro and angiogenesis and tumor growth in vivo. DNMT3B7-positive cells had higher levels of total genomic methylation and a dramatic decrease in expression of the FOS and JUN family members that comprise AP1 transcription factors. Consistent with an established antagonistic relationship between AP1 expression and retinoic acid receptor activity, increased differentiation was seen in the DNMT3B7-expressing neuroblastoma cells following treatment with all-trans retinoic acid (ATRA) compared to controls. Our results indicate that DNMT3B7 modifies the epigenome in neuroblastoma cells to induce changes in gene expression, inhibit tumor growth, and increase sensitivity to ATRA. Cancer Res; 72(18); 4714-23. Ó2012 AACR.