A Genetic Approach to C. Elegans Cholinergic Signaling (original) (raw)

Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits

The Journal of neuroscience : the official journal of the Society for Neuroscience, 1997

We show that three of the eleven genes of the nematode Caenorhabditis elegans that mediate resistance to the nematocide levamisole and to other cholinergic agonists encode nicotinic acetylcholine receptor (nAChR) subunits. unc-38 encodes an alpha subunit while lev-1 and unc-29 encode non-alpha subunits. The nematode nAChR subunits show conservation of many mammalian nAChR sequence features, implying an ancient evolutionary origin of nAChR proteins. Expression in Xenopus oocytes of combinations of these subunits that include the unc-38 alpha subunit results in levamisole-induced currents that are suppressed by the nAChR antagonists mecamylamine, neosurugatoxin, and d-tubocurarine but not alpha-bungarotoxin. The mutant phenotypes reveal that unc-38 and unc-29 subunits are necessary for nAChR function, whereas the lev-1 subunit is not. An UNC-29-GFP fusion shows that UNC-29 is expressed in body and head muscles. Two dominant mutations of lev-1 result in a single amino acid substitution...

The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit

Journal of Neurochemistry, 2005

We have cloned Caenorhabditis elegans lev-8 and demonstrated that it encodes a novel nicotinic acetylcholine receptor (nAChR) subunit (previously designated ACR-13), which has functional roles in body wall and uterine muscles as part of a levamisole-sensitive receptor. LEV-8 is an a subunit and is the first to be described from the ACR-8-like group, a new class of nAChR with atypical acetylcholine-binding site (loop C) and channel-lining motifs. A single base pair change in the first intron of lev-8 in lev-8(x15) mutants leads to alternative splicing and the introduction of a premature stop codon. lev-8(x15) worms are partially resistant to levamisole-induced egg laying and paralysis, phenotypes rescued by expression of the wild-type gene. lev-8(x15) worms also show reduced rates of pharyngeal pumping. Electrophysiological recordings from body wall muscle show that currents recorded in response to levamisole have reduced amplitude in lev-8(x15) compared with wild-type animals. Consistent with these phenotypic observations, green fluorescent protein fused to LEV-8 is expressed in body wall and uterine muscle, motor neurons and epithelial-derived socket cells. Thus, LEV-8 is a levamisole receptor subunit and exhibits the most diverse expression pattern of any invertebrate nAChR subunit studied to date.

Cholinergic receptor mutants of the nematode Caenorhabditis elegans

The Journal of neuroscience : the official journal of the Society for Neuroscience, 1987

Potential acetylcholine receptor (AChR) mutants of the nematode are selectable by resistance to the neurotoxic drug levamisole, a probable cholinergic agonist. To determine which mutants may have achieved resistance through loss of levamisole receptor function, we have assayed mutant extracts for specific 3H-meta-aminolevamisole binding activity in the presence and absence of mecamylamine. We find that mutants in 3 of the 7 genes associated with extreme levamisole resistance are obviously deficient in saturable specific 3H-meta-aminolevamisole binding activity. Mutants of the 4 other genes have abnormal binding activities that fail to undergo the apparent allosteric activation of saturable specific 3H-meta-aminolevamisole binding activity caused by mecamylamine. Thus, all 7 genes appear to be required to produce a fully functional levamisole receptor. Mutants of several other genes associated only with partial resistance to levamisole have at least grossly normal receptor binding ac...

A cellular and regulatory map of the cholinergic nervous system of C.elegans

eLife, 2015

Nervous system maps are of critical importance for understanding how nervous systemsdevelop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C.elegans nervous system. We find that acetylcholine is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional control mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly.

Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole-sensitive acetylcholine receptor

Proceedings of the National Academy of Sciences, 2008

Levamisole-sensitive acetylcholine receptors (L-AChRs) are ligandgated ion channels that mediate excitatory neurotransmission at the neuromuscular junctions of nematodes. They constitute a major drug target for anthelminthic treatments because they can be activated by nematode-specific cholinergic agonists such as levamisole. Genetic screens conducted in Caenorhabditis elegans for resistance to levamisole toxicity identified genes that are indispensable for the biosynthesis of L-AChRs. These include 5 genes encoding distinct AChR subunits and 3 genes coding for ancillary proteins involved in assembly and trafficking of the receptors. Despite extensive analysis of L-AChRs in vivo, pharmacological and biophysical characterization of these receptors has been greatly hampered by the absence of a heterologous expression system. Using Xenopus laevis oocytes, we were able to reconstitute functional L-AChRs by coexpressing the 5 distinct receptor subunits and the 3 ancillary proteins. Strikingly, this system recapitulates the genetic requirements for receptor expression in vivo because omission of any of these 8 genes dramatically impairs L-AChR expression. We demonstrate that 3 ␣and 2 non-␣subunits assemble into the same receptor. Pharmacological analysis reveals that the prototypical cholinergic agonist nicotine is unable to activate L-AChRs but rather acts as a potent allosteric inhibitor. These results emphasize the role of ancillary proteins for efficient expression of recombinant neurotransmitter receptors and open the way for in vitro screening of novel anthelminthic agents.

The C.elegansric-3 gene is required for maturation of nicotinic acetylcholine receptors

Embo Journal, 2002

Mutations in ric-3 (resistant to inhibitors of cholinesterase) suppress the neuronal degenerations caused by a gain of function mutation in the Caenorhabditis elegans DEG-3 acetylcholine receptor. RIC-3 is a novel protein with two transmembrane domains and extensive coiled-coil domains. It is expressed in both muscles and neurons, and the protein is concentrated within the cell bodies. We demonstrate that RIC-3 is required for the function of at least four nicotinic acetylcholine receptors. However, GABA and glutamate receptors expressed in the same cells are unaffected. In ric-3 mutants, the DEG-3 receptor accumulates in the cell body instead of in the cell processes. Moreover, co-expression of ric-3 in Xenopus laevis oocytes enhances the activity of the C.elegans DEG-3/DES-2 and of the rat a-7 acetylcholine receptors. Together, these data suggest that RIC-3 is speci®cally required for the maturation of acetylcholine receptors.

A Murine Neural-Specific Homolog Corrects Cholinergic Defects inCaenorhabditis elegans unc-18Mutants

The Journal of Neuroscience, 1996

Caenorhabditis elegans UNC-18 protein, homologous to yeast Sec1p, is important in neurotransmitter release, because the unc-18 mutation leads to severe paralysis and presynaptic acetylcholine (ACh) accumulation. To examine the functional conservation in mammals, we tried to isolate unc-18 isoforms from mouse and human brain cDNA libraries and obtained two classes of isoforms-neural genes and ubiquitous genes. Neural genes were identical to Munc-18 (also known as n-Sec1 or rbSec1), identified in rat and bovine brains as a syntaxinbinding protein. According to "Munc-18" terminology, we call the neural genes Munc-18-1 and the ubiquitous genes Munc-18-3. These mammalian isoforms exhibit 58% (Munc-18-1) and 42-43% (Munc-18-3) amino acid sequence identity with UNC-18. Next, we constructed transgenic unc-18 mutants to test biological activity of mouse Munc-18-1 and Munc-18-3 under the control of C. elegans unc-18 promoter. Munc-18-1 compensates for severe locomotion disability and cholinergic defects, e.g., abnormal sensitivities to cholinesterase inhibitors and cholinergic receptor agonists in unc-18 mutants, but Munc-18-3 fails. These data suggest that Munc-18-1 and C. elegans unc-18 may play positive roles in ACh release and that the molecular mechanism of neuronal regulated secretion has been partially conserved from nematodes to mammals.

Halevi, S. et al. The C. elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors. EMBO J. 21, 1012-1020

The EMBO Journal

Mutations in ric-3 (resistant to inhibitors of cholinesterase) suppress the neuronal degenerations caused by a gain of function mutation in the Caenorhabditis elegans DEG-3 acetylcholine receptor. RIC-3 is a novel protein with two transmembrane domains and extensive coiled-coil domains. It is expressed in both muscles and neurons, and the protein is concentrated within the cell bodies. We demonstrate that RIC-3 is required for the function of at least four nicotinic acetylcholine receptors. However, GABA and glutamate receptors expressed in the same cells are unaffected. In ric-3 mutants, the DEG-3 receptor accumulates in the cell body instead of in the cell processes. Moreover, co-expression of ric-3 in Xenopus laevis oocytes enhances the activity of the C.elegans DEG-3/DES-2 and of the rat a-7 acetylcholine receptors. Together, these data suggest that RIC-3 is speci®cally required for the maturation of acetylcholine receptors.

Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon

Proceedings of the National Academy of Sciences, 1998

The deg-3 gene from the nematode Caenorhabditis elegans encodes an ␣ subunit of a nicotinic acetylcholine receptor that was first identified by a dominant allele, u662, which produced neuronal degeneration. Because deg-3 cDNAs contain the SL2 trans-spliced leader, we suggested that deg-3 was transcribed as part of a C. elegans operon. Here we show that des-2, a gene in which mutations suppress deg-3(u662), is the upstream gene in that operon. The des-2 gene also encodes an ␣ subunit of a nicotinic acetylcholine receptor. As expected for genes whose mRNAs are formed from a single transcript, both genes have similar expression patterns. This coexpression is functionally important because (i) des-2 is needed for the deg-3(u662) degenerations in vivo; (ii) an acetylcholine-gated channel is formed in Xenopus oocytes when both subunits are expressed but not when either is expressed alone; and (iii) channel activity, albeit apparently altered from that of the wild-type channel, results from the expression of a u662-type mutant subunit but, again, only when the wild-type DES-2 subunit is present. Thus, the operon structure appears to regulate the coordinate expression of two channel subunits.